
No. 1 i-Technology Magazine in the World

PLUS...

Bringing Together Eclipse 3.1,
J2SE 5.0, and Tomcat 5.0

Web Frameworks
and IDE

JDJ.SYS-CON.COM VOL.10 ISSUE:10

RETAILERS PLEASE DISPLAY
UNTIL NOVEMBER 30, 2005

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

IN THIS ISSUE...
Deriving the Visitor Pattern
PAGE 26

Benefiting from
Open Source Development
PAGE 32

JDBC – The Indispensable Component
of Persistence Mechanisms
PAGE 44

How to Provide Dynamic
Security Permissions

BUILDING A TOOLBAR FROM A MENU PAGE 54

3October 2005JDJ.SYS-CON.com

s I write this editorial, I am waiting,
like hundreds and thousands of
people worldwide, to hear whether
(and if so, how) Sun and Google are

going to be teaming up to take on Microsoft
in its holiest of holy markets, the desktop.
 Could such an alliance have been
dreamed of just one year ago? The answer,
of course, is “Yes!” Nothing has prevented
Sergey Brin and Larry Page from nipping
from Mountain View to San Jose long ago and
dreaming up an imaginative combination of
Google’s brand recognition and Sun’s desire
to liberate desktop apps from the desktop
and shift them to the network.
 However, there is something about the
prevailing mood of Q4 of 2005, just begun,
that seems to be supremely conducive
to a new kind of corporate symbiosis in
which companies don’t merely just gobble
each other up, Oracle-PeopleSoft style, but
genuinely seek to create various technology
wholes that are greater than the sum of the
technology parts.
 We have Microsoft and JBoss teaming up
to improve interoperability between the two
companies’ respective platforms, which is
the closest yet Redmond has come to sup-
ping with open source, even if it is still with
a long spoon. And now we have Sun and
Google cozying up to one another, not for a
merger or for an acquisition, but for some-
thing much more interesting: a game-chang-
ing strategy.
 “Game-changing” is what a disruptive
company like Google does best, and Sun
for its part isn’t a slouch when it comes to
innovation, especially not since the arrival
of Jonathan Schwartz with his charismatic
(and highly unusual) combination of socially
responsible entrepreneurial flair, business
school acumen, and technological savvy.
 The great American philosopher William
James, leader of the philosophical move-
ment known as Pragmatism, once wrote that
“Pessimism leads to weakness, optimism to
power.” Optimism, in turn, can often be the
crucible of inventiveness, of game-chang-
ing innovation, and Schwartz is, in these
terms, an optimist par excellence, as are Brin
and Page. Scott McNealy probably was an
optimist, and still has power, but many in the
industry sense some kind of weakness, the

kind of weakness that most likely proceeds
from pessimism, the same kind of pessimism
that argues that technology has plateaued
because the NASDAQ “is never again going
to reach 5000.”
 Technology has never been healthier,
but it takes a certain salt-water injection
of optimism to see it, amid the growing
worries (understandable worries) about the
short-term economic effects of IT offshoring
and the recurring grumbling that it’s harder
to make $10 million these days. So what if it
is; how does that mean that technology is a
sucked orange?
 When Sun and Google make whoopee
together, it’s a clear sign that there’s plenty
of life yet in the desktop space; the rise and
rise of Linux and open source show that on
the server side things are just as competitive
as ever; and the unstoppable surge of thin
client and embedded technologies continues
apace. So really truly, the only people making
the argument that there’s some kind of a tech-
nology slowdown are looking at stock prices,
not at emerging technologies themselves.
 Foremost among all emerging develop-
ments is something called “Web 2.0” – in
which the network itself is the platform,
spanning all connected devices. This is the
paradigm that Schwartz’s Sun, mark my
words, will bestride (though not necessar-
ily dominate Microsoft-style) in the next 10
years, much more than McNealy’s Sun has
prevailed over Web 1.0 in the last 10.
 As the old joke has it, it’s difficult to make
predictions, particularly about the future, but
some predictions are easier to make than oth-
ers. Mine is that Sun is about to rise. Anyone
with an interest in Web 1.0 will surely want to
stick around to see just how Web 2.0 is going
to shape up. It may take a while, but there
will be some amazing new success stories,
continuing more in the new-business mode
of eBay, Google, and Amazon rather than the
old-business mode of Microsoft and IBM.
 Can Sun reinvent itself and shift from the
latter category to the former? I believe, under
Jonathan Schwartz’s eventual (I would add,
inevitable) leadership, that it can. Optimism,
as James reminded us, leads not just to a
more healthful outlook on business and on
life.
 It also leads to power.

From the Group Publisher

Pessimism Leads
to Weakness,

Optimism to Power
 Editorial Board
 Desktop Java Editor: Joe Winchester
 Core and Internals Editor: Calvin Austin
 Contributing Editor: Ajit Sagar
 Contributing Editor: Yakov Fain
 Contributing Editor: Bill Roth
 Contributing Editor: Bill Dudney
 Contributing Editor: Michael Yuan
 Founding Editor: Sean Rhody

Production
 Production Consultant: Jim Morgan
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Associate Editor: Seta Papazian
 Research Editor: Bahadir Karuv, PhD

Writers in This Issue
Jonathan Bruce, Sumitra Chary, Christian Donner,

Yakov Fain, Franz Garsombke, Jeremy Geelan,
Phil Herold, Onno Kluyt, Jim Lamoureaux,
Mauro Micalizzi, Boris Minkin, Ilia Papas,

Nishanth Sastry, Dita Vyslouzil,
 Xiaozhong Wang, Joe Winchester

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2005 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Dorothy Gil, dorothy@sys-con.com. SYS-CON Media and
SYS-CON Publications, Inc., reserve the right to revise, republish and

authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant
Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is

group publisher of

SYS-CON Media and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON

at conferences and

trade shows, speaking

to technology

audiences both in

North America

and overseas.

jeremy@sys-con.com

Jeremy Geelan

A

Makeover:
Extreme

Extreme

Architecture Edition

5October 2005JDJ.SYS-CON.com

OCTOBER 2005 VOLUME:10 ISSUE:10

contents
JDJ Cover Story

18

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals postage rates are paid at Montvale, NJ 07645 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

Features

FROM THE GROUP PUBLISHER

Pessimism Leads to Weakness,
Optimism to Power
by Jeremy Geelan.................................3
VIEWPOINT

@ see Javadoc
by Xiaozhong Wang.................................6
GENERAL JAVA

Bringing Together Eclipse 3.1,
J2SE 5.0, and Tomcat 5.0
Using Ant and JUnit
by Boris Minkin.................................8
YAKOV’S GAS STATION

Web Frameworks and IDE
Part Three
by Yakov Fain.................................30

TECHNIQUES

ArrayListModel
A convenient way to use a simple collection
by Phil Herold

.................................50

JAVA DESKTOP

Building a Toolbar from a Menu
For better usability, versatility, and user friendliness
by Mauro Micalizzi.................................54

FEEDBACK

Letters to the Editors.................................58

JSR WATCH

2005 JCP EC Elections Are
Under Way
Ratifi cation ballot starts voting marathon
by Onno Kluyt.................................60

GENERAL JAVA

How to Provide
Dynamic Security Permissions
Two approaches
 by Xiaozhong Wang.................................38

JAVA DATABASE

JDBC – The Indispensable
Component of Persistence
Mechanisms
It’s critical for the success of the O/R infrastructure
by Jonathan Bruce.................................44

DESKTOP JAVA VIEWPOINT

The Usability Paradox
by Joe Winchester.................................48

Deriving the Visitor Pattern
by Nishanth Sastry

26

Benefi ting from
Open Source Development

by Sumitra Chary, et al.

32

by Franz Garsombke

Large-scale refactoring with Spring and Hibernate

Makeover:Makeover:Makeover:
Extreme

Extreme

18Large-scale refactoring with Spring and Hibernate

Makeover:
Architecture Edition

JDJ.SYS-CON.com6 October 2005

y dear wife has just started to
learn to use Java in her work
and asks me a lot of questions
as she begins her journey in

this wonderful language. To almost all
her questions my answer is the same:
“See Javadoc.”
 In addition to being a way of avoid-
ing having to find or know the answer, it
constantly surprises me what is available
in the Javadoc and how useful a source
of information it can be.
 When I began to use Java in 1998
I received the pointer of the Java API
Specification, or Javadoc, from a col-
league. Despite the limitations of the
JDK 1.1 Javadoc style when compared
to Java 2, I immediately found that it
was much more helpful than my other
reference books. The books might help
you get started on Java but, once you’re
serious, the Javadoc is something I know
I can’t live without.
 The obvious benefit of using Javadoc
is getting the most accurate and detailed
description of Java APIs. Most likely the
Javadoc is written by Java API imple-
menters who know the behavior of the
API inside-out. When the API changes,
so does the Javadoc, whereas books,
tutorials, and other sources lag behind.
To know how a mehod works, asks the
author who committed the doc and code
together.
 To ensure that different vendors’
Java implementations uphold Java’s
fundamental tenant of “write once, run
anywhere,” Javadoc plays a part too. For
any implementation to claim that it is
compatible to a certain Java specifica-
tion, it must pass the conformance test
suite, sometimes called Technology
Compatibility Kit (TCK). Each test in the
TCK is strictly written according to the
Javadoc, and nothing else, to make sure
that the behavior of an implementation
conforms. So if your application relies
solely on behaviors described in Java-
doc, you not only leverage the TCK effort
but also have the maximum assurance
that the application will work across
different Java implementations. On the
other hand, un-Javadoc’ed behaviors are

likely implementation dependent and
subject to change in future releases. If
your application relies on any of these,
the guarantee of “write once, run every-
where” may no longer hold.
 Javadoc is a “living” document, as
it is continuously being updated and
maintained. At Sun, a lot of change
requests of Javadoc are filed by develop-
ment teams and customers during the
development of a new release of a Java
technology. These include requests for
API semantic changes, behavior clarifi-
cations, or are as simple as grammar or
spelling corrections. Regardless of how
trivial it is, each change request to Java-
doc is treated seriously. Some of them
have to go through thorough reviews
and approvals. Each new release of a
Java technology is often accompanied by
hundreds of Javadoc improvements, so
by using Javadoc you leverage all these
efforts.
 Today’s Javadoc is more complete
than ever. The String.substring() story is
just one example, but if you have other
questions, such as “What is the behavior
of this method if the parameter is null?”
or “Does this method throw IllegalArgu-
mentException or IndexOutOfBound-
Exception if the index is invalid?”, take a
look at the Javadoc and seek the answers
there.
 Javadoc is by no means perfect. You
may find that an API’s description lacks
certain aspects or is not clear enough.
Should you feel that way, the developer
who implements this API may have felt
the same and chosen his own interpreta-
tion in the API’s implementation. The
result is different behaviors across dif-
ferent implementations. It is important
therefore that, as an API consumer, you
file Javadoc change requests at http://
bugs.sun.com/services/bugreport/in-
dex.jsp. Remember, a more precise and
definitive Javadoc will result in more
conformant Java implementations,
which in turn increase the chance that
your applications can run across differ-
ent platforms.
 So what can you do with Javadoc? See
it, rely on it, and improve it.

Viewpoint

Xiaozhong Wang
Guest Editor

@ see Javadoc

M

President and CEO:
 Fuat Kircaali fuat@sys-con.com

Vice President, Business Development:
 Grisha Davida grisha@sys-con.com

Group Publisher:
 Jeremy Geelan jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

 Carmen Gonzalez carmen@sys-con.com

Vice President, Sales and Marketing:
 Miles Silverman miles@sys-con.com

Advertising Sales Director:
 Robyn Forma robyn@sys-con.com

National Sales and Marketing Manager:
 Dennis Leavey dennis@sys-con.com

Advertising Sales Manager:
 Megan Mussa megan@sys-con.com

Associate Sales Manager:
Kerry Mealia kerry@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com

Associate Editor:
 Seta Papazian seta@sys-con.com

Production
Production Consultant:

 Jim Morgan jim@sys-con.com

Lead Designer:
 Tami Lima tami@sys-con.com

Art Director:
 Alex Botero alex@sys-con.com

Associate Art Directors:
 Abraham Addo abraham@sys-con.com
 Louis F. Cuffari louis@sys-con.com

Assistant Art Director:
 Andrea Boden andrea@sys-con.com

Video Production:
 Frank Moricco frank@sys-con.com

Web Services
Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designers:
 Stephen Kilmurray stephen@sys-con.com
 Vincent Santaiti vincent@sys-con.com
 Shawn Slaney shawn@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:
 Betty White betty@sys-con.com

Accounts Receivable:
 Gail Naples gailn@sys-con.com

SYS-CON Events
President, SYS-CON Events:

 Grisha Davida grisha@sys-con.com

National Sales Manager:
 Jim Hanchrow jimh@sys-con.com

Customer Relations
Circulation Service Coordinators:

 Edna Earle Russell edna@sys-con.com
 Linda Lipton linda@sys-con.com

JDJ Store Manager:
 Brunilda Staropoli bruni@sys-con.com

Xiaozhong Wang is a

software engineer at Sun

where he has solved some

security problems

in his TCK (Technology

Compatibility Kit) work.

xiaozhong.wang@sun.com

JDJ.SYS-CON.com8 October 2005

clipse is the most popular Open
Source IDE on the Java mar-
ket and the latest 3.1 release
supports all the new language

elements of J2SE 5.0.
 In this article I’ll show you see how
to create a Web project that has Java
classes located in different packages
and how to use ANT to build this project
and JUnit to test it. I assume that you
have J2SE 5.0 installed and are familiar
with Ant and JUnit.

Building Java 5.0 Applications
with Eclipse
 We’ll build a servlet that will demo
some new Java 5.0 features and do some
basic tasks like creating a session to
track user visits to multiple Web pages.
This code can easily be extended to
store a user ID in the session that will
travel with her as the site is navigated.
The value of the visit counter is stored in
the session so multiple visits to the page
will be counted (this includes the page
refreshes after pressing the browser’s
“Reload” button). If the counter goes
over five, the counter gets cleared.

Installing Tomcat
 I’ve used Tomcat 5.0, which is avail-
able at http://jakarta.apache.org/tom-
cat/. Installation is a breeze, and it’s
smart enough to find your installation
of J2SE 5.0. It also lets you test Java serv-
lets easily on your own machine. Other
that making you restart the server every
time a new servlet is deployed, Tomcat
is a great server for what we’re doing and
many other tasks.

Creating a New Project in Eclipse
 To create our servlet, start by creat-
ing a new Java project by selecting
the menus File, New, and Other. Then
specify the name of the project, say,
MyJavaProject, (make sure that J2SE 5.0

is selected as the default JRE), and click
Finish. Actually, Eclipse lets you select
a different version of the Java runtime
at any time using the menus Windows,
Preferences, Java > Installed JRE’s. You
can also set the compiler compliance
level on the project level by selecting Java
Compiler under the project’s properties.
 Since the standard J2SE 5.0 SDK
doesn’t support servlets, let’s add the
servlet.jar that comes with Tomcat. It’s
in its directory common\lib\servlet-api.
jar. To add this external jar to an Eclipse
project, right-click on MyJavaProject,
select properties, Java Build Path, and
under the Libraries tab add this external
jar. Now our servlets will compile.
 Eclipse by itself doesn’t support
debugging with Tomcat unless you add
some custom Web development plug-ins
to it, such as Web Tools Project (WTP).
It’s possible to debug Tomcat applica-
tions using Eclipse remote debugging
capabilities. For more information see
the Java Developer’s Journal at http://
java.sys-con.com/read/44918.htm.

Some of the New J2SE 5.0 Features
 Let’s create several supporting classes
that will be used by our servlet and
demonstrate some of the J2SE 5.0 capa-
bilities. It’s always a good idea to keep
classes in separate packages based on
functionality or some other criteria. Let’s
call the package “support.” Just right-
click on the project name, select “New
Package,” and enter the package name.

Autoboxing
 Create a new class called Boxer that
will support Java 5.0 enhanced boxing
and unboxing operations. Right-click
on the Java project, and select a New
Class (un-check creation of the main
method). Enter the source code of the
class as shown in Listing 1 at the end of
the article.

 Just press Ctrl-S and the class is saved
and compiled. As you can see, it has
three methods for boxing, unboxing,
and simplified adding to a collection.

Generics
 Now create another class called
Generic that shows how to eliminate
the need for casting when retrieving ele-
ments from a collection by introducing
generic collection types. You can specify
the type of collection elements during
its creation (see Listing 2).
 Generic types let objects of the
same class operate safely on objects
of different types. For example, they
provide compile-time assurances that
a List<String> always contains Strings
and a List<Integer> always contains
Integers.
 Eclipse can handle both generic and
non-generic types:
• Generic types can be safely

renamed.
• Type variables can be safely

renamed.
• Generic methods can be safely

extracted from or inlined into gener-
ic code.

• Code assist can automatically insert
appropriate type parameters in
parameterized types.

 In addition, a new refactoring option
has been added. “Infer Generic Type
Arguments” can infer type parameters
for every type reference in a class, a
package, or an entire project.

Enhanced For Loop
 The next useful feature of J2SE 5.0
provides support for the enhanced “for”
loop. This spares us from creating an
iterator, navigating it, and retrieving
elements from it. Create this class in
Eclipse in the same package support
(see Listing 3).

General Java

by Boris Minkin

Bringing Together Eclipse 3.1,
J2SE 5.0, and Tomcat 5.0

E

Boris Minkin is a Divisional

Vice President of a major

financial corporation. He has

more than 12 years of

experience working in various

areas of information technology

and financial services.

Boris is currently pursuing his

Masters degree at Stevens

Institute of Technology, New

Jersey. His professional interests

are in the Internet technology,

service-oriented architecture,

enterprise application

architecture, multi-platform

distributed applications, and

relational database design.

bm@panix.com

Using Ant and JUnit

JDJ.SYS-CON.com10 October 2005

General Java

Java printf Function
 Now, C-lovers, you can use the printf
function in Java so create one more class as
in Listing 4.

Methods with Variable Number
of Arguments (varargs)
 Java 5.0 lets you create methods with a
variable number of arguments as in Listing 5.
 This method’s signature is pretty similar
to the public static String[] format(String str,
Object[] args), however, it’s more elegant to
invoke since multiple arguments can be just
passed on the command line rather than
having to construct a whole new array.
 Don’t forget to create this class in the
package support.

Static Imports
 Allows importing static constants and
methods, saves on extra mentioning of
static classes (see Listing 6).

Creating a Servlet
 Now that we’ve created all the supporting
classes, let’s create a servlet. First, we create
a new package called servlet in our project.
 Then, we can just create a SampleServlet
class by selecting HttpServlet as a superclass
in the Eclipse class creation window.
 Servlets can handle all the HTTP protocol
invocation types. GET and POST are the
most common ones, through. Servlet code
is in Listing 7.
 As one can see from the code, the servlet
first tries to create an Http session by calling
request.getSession(true), which means that a
new session will be created if one doesn’t exist
already, then we’ll get the “sessiontest.coun-
ter” attribute from the session, which will be
assigned 0 if it’s null, increment it, and set it
back to the session. The session will be invali-
dated (all attributes removed from it) when
counter goes above five. We’ll get an HTTP
request header called “Cookie” and a refer-
ence to the HTTP response writer and pass
them to the SampleProgram class (see Listing
8) that will perform the logic described below.

Creating a Test Class and JUnit Test Case
 For our servlet to work, we’ll create one
more supporting class SampleProgram
with a main method that can test all these
supporting classes and will be eventually
called by the servlet too.
 As you can see, the program in Listing
8 uses all our classes. It can also be tested
from the command line (without having
to deploy a servlet in Tomcat) by creating a
JUnit test case.

 To create a JUnit test case in Eclipse,
right-click on the class SampleProgram
and select the menus New, Other, Junit,
and Junit Test Case. It’ll add the junit.jar
to the classpath, if needed, and a window
pops up asking how we want to create our
test case.
 Select setUp() and tearDown() methods
to set up the test environment and tear
it down when finished. Also select create
main method and allow Swing UI so we can
run our test visually. On the next screen se-
lect methods to test: main and testClasses.
 Once finished, a SampleProgramTest
class is generated and we can test it by se-
lecting Run As – JUnit test from the context
menu. JUnit will test to see if any exceptions
occur and display them as errors. It will also
display failures if any of our assertion tests
fail. Below is the source code of our sample
JUnit test (see Listing 9).
 In both test methods, we’ve added meth-
od calls with arguments to make sure there
are no exceptions. We also do an assertion
that will definitely fail to demonstrate the
JUnit failure detection capability:

junit.framework.ComparisonFailure: expected:<1>

but was:<2>

 at junit.framework.Assert.assertEquals(Assert.

java:81)

 at junit.framework.Assert.assertEquals(Assert.

java:87)

Coding Web.xml Deployment Descriptor
 Web applications require a Web.xml
deployment descriptor (see Listing 10),
which should be put under the WEB-INF
directory.
 In our deployment descriptor, we’ve
included our SampleServlet and the index.
html as a welcome page.

Deploying Servlet Using ANT
 Eclipse 3.1 comes with built-in ANT sup-
port so you can execute XML-based scripts
to deploy your application in a specific
application server. In our case, we’re deploy-
ing under Tomcat 5.0 server, which also has
built-in support for Ant for the following
tasks:
• Deploying WAR files
• Reloading WAR files
• Undeploying WAR files

 It makes deploying, redeploying, or
undeploying an application easier. With
Eclipse support for Ant, it’s easy to create
build an XML file with Ant tasks in it using
Ant executor.

 To take advantage of this support, we
have to add Eclipse to the external catalina-
ant.jar (which is located under the $TOM-
CAT\server\lib directory and contains sup-
port for Tomcat Ant tasks) to the runtime
class-path before running Ant tasks. Select
the menus Run, External Tools, and External
Tools and double-click on the Ant-build.
 Running Ant tasks is simple in Eclipse.
Just right-click on your build file (you have
to create a build.xml file containing your
Ant tasks as in Listing 11) and select Run As
– Ant Build, then select tasks to create-a war
file, and deploy the application.
 As you can see from Listing 11, there
are four major tasks in the build:
• Creating the WAR file
• Deploying the WAR file to Tomcat
• Reloading the application
• Undeploying the WAR file from Tomcat

 The file also contains variables used by
these tasks. The notable ones are:
• “build” – where to build a WAR file
• “path” – the context root of the Web

application, in this case “myapp”
• “url” – the url of the Tomcat adminis-

trative application (which comes
with Tomcat and provides an inter-
face for deploying/undeploying
applications)

• username – the user name for the
Tomcat admin application (in our case
it’s “admin”)

• password – the password for the
Tomcat admin application (in our case
it’s “admin”)

 The file also contains various “taskdef”
entries that point to the Java classes inside
catalina-ant.jar that define the execution
of the particular tasks.
 Using the Eclipse interface (right-click
on build.xml file and select Run As – Ant
Build…), these tasks can be executed one at
a time or all together. Note that “Deploying
the WAR file to the Tomcat” task is depen-
dent on “Creating WAR file” task, so execute
the “create-war” task first, then “deploy” task.
 It’s time for us to start the Tomcat server
and deploy our application. In Windows,
simply go to Control Panel – Services and
start the Apache Tomcat service. In Unix,
you can execute the $TOMCAT\bin\startup.
sh script.
 Once it’s deployed (the ANT deployment
task has been completed), just point your
browser at http://localhost:8080/myapp/
SampleServlet/ and you should see the
output as in Figure 1. ��

��������������������������������

��
���

����������������������������������
����������������������������������

��

���
���
��
��
��
��
�
�������������������
���
���
���
���

��
��������������������������������

��
���

����������������������������������
����������������������������������

��

���
���
��
��
��
��
�
�������������������
���
���
���
���

JDJ.SYS-CON.com12 October 2005

Conclusion
 In this article, I’ve shown you some of
the new J2SE 5.0 elements and covered
the creation of a Web application using
simple tools available in Eclipse 3.1 and
Tomcat 5.0, such as Java wizards, JUnit, and
Ant. There are more advanced tools that
can streamline and automate this develop-
ment. One such extension to Eclipse is called
Web Tools Project WTP (http://www.eclipse.
org/Webtools), which I’ll cover in a future
article.

General Java

Listing 1: Class Boxer
package support;

import java.util.Collection;

/** This class supports a conversion between primitive types and
wrapper objects (and vice-versa) thatʼs needed when adding primi-
tives to a collection
*/

public class Boxer {

 // boxes int type into the Integer object
 // note that no wrapping or class casting is needed
 public static Integer box(int i) {
 Integer obj = i;
 return obj;
 }

 // unboxes primitive type from the Integer object
 // note again that no wrapping is needed
 public static int unbox(Integer obj) {
 int i = (int)obj;
 return i;

 }

 // adds int primitive directly to collection
 // with auto-wrapping
 public static void add(Collection col, int i) {
 col.add(i);
 }
}

Listing 2: Class Generic

// Shows an example of using Java generics
package support;

import java.util.List;
import java.util.LinkedList;

public class Generic {
 // Return Generic List<Integer> object with one int eleemnt
 public static List<Integer> createGenericListWith(int g) {
 List<Integer> l = new LinkedList<Integer>();
 l.add(g); // Using autoboxing
 Integer i = l.iterator().next();
 return l;
 }
}

Listing 3: Class ForLoop
package support;

import java.util.Collection;
import java.util.ArrayList;
/**
 * Provides support for enhanced for loop
 *
 */

public class ForLoop {

 // convert the Collection of Integers to String collection
 public ArrayList<String> convertToString(Collection<Integer> c) {
 ArrayList<String> arr = new ArrayList<String>();
 for (Integer i : c) arr.add(i.toString());
 return arr;
 }
}

Listing 4: Using printf

package support;
import java.io.PrintWriter;
public class Printf {
 // print the number with decimal points
 public static void printWithDecimals(PrintWriter out, double q) {
 // Print the number with 3 decimal places.
 out.printf (“%5.3f %n”, q);
 }
}

Listing 5: Variable arguments

package support;
/**
 * Using a method with variable arguments
 */

public class Varargs {
 // method with variable number of arguments
 public static void format(java.io.PrintWriter out, String str,
Object... args) {
 for(int i=0; i<args.length; i++) {
 out.println(“Formatted” + (args[i]));
 }
 }
}

Listing 6: Static Imports

package support;
/** Demonstrates static import capability
 */
import static java.lang.Math.*;
public class StaticImport {
 public static double pitimes(double d){

 Figure 1 The servlet’s output

Listings continued on page 14

SUPERCHARGE

YOUR APPS WITH

THE POWER OF

LOCATION

INTELLIGENCE

Contact us at sales@mapinfo.com

Try it and see for yourself. Visit www.mapinfo.com/sdk
Learn more about the MapInfo Location Platform for Java,
access whitepapers and download free SDKs.

Create applications for:
• Web-based store location finders • Visualizing where your customers are
• Analyzing where revenue comes from – and where it doesn’t • Managing assets such as cell towers, vehicles and ATMs

100% Java SDK enables Location
Intelligence through web services

Create desktop & web UIs using
Swing, JSP and JSF Components

Integration with Eclipse, NetBeans,
IntelliJ and more

SUPERCHARGE

YOUR APPS WITH

THE POWER OF

LOCATION

INTELLIGENCE

Contact us at sales@mapinfo.com

Try it and see for yourself. Visit www.mapinfo.com/sdk
Learn more about the MapInfo Location Platform for Java,
access whitepapers and download free SDKs.

Create applications for:
• Web-based store location finders • Visualizing where your customers are
• Analyzing where revenue comes from – and where it doesn’t • Managing assets such as cell towers, vehicles and ATMs

100% Java SDK enables Location
Intelligence through web services

Create desktop & web UIs using
Swing, JSP and JSF Components

Integration with Eclipse, NetBeans,
IntelliJ and more

JDJ.SYS-CON.com14 October 2005

General Java

 return d * PI;
 }
 public static double absoluteValue(double g) {
 return abs(g);
 }
}

Listing 7: Sampleservlet class
package servlet;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import static support.Boxer.*;

/**
A servlet can create a session, which means that visits to multiple
pages within a site can be tracked. The counterʼs value is stored in
the session, so multiple visits to the page can be counted. If the
counter goes over five, itʼs cleared.
 */

public class SampleServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)

 throws ServletException, IOException {

 // Get the Session object from the request parameter (create it if
necessary)

 boolean create = true;
 HttpSession session = req.getSession(create);

// Get the session data value (null value means counter has never
been set)

Integer ival = (Integer)session.getAttribute (“sessiontest.counter”);

 // convert the Integer object to an int primitive type
 int num = unbox(ival);
 num++;

 // convert the int primitive type to an Integer and set it as a
session attribute
 session.setAttribute (“sessiontest.counter”, box(num));
 if (num > 5) {
 session.invalidate();
 }

 String cookie = req.getHeader(“Cookie”);

 // Write the output HTML page - just echo the counterʼs
value

 resp.setContentType(“text/html”);
 PrintWriter out = resp.getWriter();

 SampleProgram.performLogic(out, num, cookie);
 }
}

Listing 8: SampleProgram class
package servlet;

import static support.ForLoop.convertToString;

import static support.Generic.createGenericListWith;

import static support.Printf.printWithDecimals;

import static support.StaticImport.pitimes;

import static support.Varargs.format;

import java.io.PrintWriter;

import java.util.ArrayList;

import java.util.List;

/**

 * Sample program to be used by servlet

 *

 */

public class TestProgram {

 /**

 * To be called from the command line if needed

 */

 public static void main(String[] args) {

 if (args.length < 2) throw new RuntimeException(“Usage: java serv-

let.SampleLogic number string”);

 int num = Integer.parseInt(args[0]);

 String cookie = args[1];

 PrintWriter out = new PrintWriter(System.out, true);

 performLogic(out, num, cookie);

 }

 /**

 * Performs all the necessary logic to display proper output

 */

 public static void performLogic(PrintWriter out, int num, String

cookie) {

 List<Integer> list = createGenericListWith(num);

 ArrayList<String> alist = convertToString(list);

 out.println(„<html>“);

 out.println(„<head><title>Session Tracking Test</title></

head>“);

 out.println(„<body>“);

 out.println(„<h1>Session Tracking Test</h1>“);

 out.print („You have hit this page „);

 // example of using printf function

 printWithDecimals(out, num);

 out.println(„ times“ + „
“);

 String fmt = „{1,number,$ʻ#ʻ,##}“;

 out.println(„Values are: „);

 int[] intArr = new int[5];

 for(int i=0;i<5;i++) intArr[i] = i;

 format(out, fmt, intArr);

 out.println(„
“);

 out.println(„Array is: „ + intArr + „
“);

 out.println(„PI times is: „ + pitimes(num) + „
“);

 out.println („Your cookie (session id): „ + cookie);

 out.println(„</body></html>“);

 }

}

Listing 9: JUnit Test Program
package servlet;

import java.io.PrintWriter;

import junit.framework.TestCase;

Listings continued on page 16

JDJ.SYS-CON.com16 October 2005

���

���
��
���

�� �����������������
���
��
��

���
��
���
���������������������������� ��
���
���
����������������������������

������������������������������������

�������������������������������������� ��

����������������������������

���

��
���

General Java

public class SampleProgramTest extends TestCase {

 public static void main(String[] args) {

 junit.textui.TestRunner.run(SampleProgramTest.class);

 }

 protected void setUp() throws Exception {

 super.setUp();

 }

 protected void tearDown() throws Exception {

 super.tearDown();

 }

 /*

 * Test method for ʻservlet.SampleProgram.main(String[])ʼ

 */

 public void testMain() {

 // TODO Auto-generated method stub

 SampleProgram.main(new String[]{“1”, “abc”});

 assertEquals(“1”, “2”);

 }

 /*

 * Test method for ʻservlet.SampleProgram.performLogic(PrintWrit

er, int, String)ʼ

 */

 public void testPerformLogic() {

 // TODO Auto-generated method stub

 PrintWriter out = new PrintWriter(System.out, true);

 SampleProgram.performLogic(out, 1, “abc”);

 }

}

Listing 10: The servlet’s deployment descriptor Web.xml.
<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE Web-app PUBLIC “-//Sun Microsystems, Inc.//DTD Web

Application 2.3//EN” “http://java.sun.com/dtd/Web-app_2_3.dtd”>

<Web-app id=”WebApp”>

 <display-name>MyApp</display-name>

 <servlet>

 <servlet-name>SampleServlet</servlet-name>

 <display-name>SampleServlet</display-name>

 <description>Sample Servlet</description>

 <servlet-class>servlet.SampleServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>SampleServlet</servlet-name>

 <url-pattern>/SampleServlet</url-pattern>

 </servlet-mapping>

 <welcome-file-list>

 <welcome-file>index.html</welcome-file>

 <welcome-file>index.htm</welcome-file>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>default.html</welcome-file>

 <welcome-file>default.htm</welcome-file>

 <welcome-file>default.jsp</welcome-file>

 </welcome-file-list>

</Web-app>

Listing 11: ANT deployment script build.xml
<?xml version=”1.0” encoding=”UTF-8”?>

<project name=”MyJavaProject” default=”create-war” basedir=”.”>

 <!-- Configure the directory where Tomcat 5.0 is -->

 <property name=”local-tomcat” value=”C:/Program Files/Apache

Software Foundation/Tomcat 5.0”/>

 <!-- Configure the directory into which the Web application

is built -->

 <property name=”build” value=”${basedir}/build”/>

 <!-- Configure the context path for this application -->

 <property name=”path” value=”/myapp”/>

 <!-- Configure properties to access the Manager application -

->

 <property name=”url” value=”http://localhost:8080/man-

ager/html”/>

 <property name=”username” value=”admin”/>

 <property name=”password” value=”admin”/>

 <!-- Configure the custom Ant tasks for the Manager applica-

tion -->

 <taskdef name=”deploy” classname=”org.apache.catalina.ant.

DeployTask”/>

 <taskdef name=”list” classname=”org.apache.catalina.ant.

ListTask”/>

 <taskdef name=”reload” classname=”org.apache.catalina.ant.

ReloadTask”/>

 <taskdef name=”resources” classname=”org.apache.catalina.ant.

ResourcesTask”/>

 <taskdef name=”roles” classname=”org.apache.catalina.ant.

RolesTask”/>

 <taskdef name=”start” classname=”org.apache.catalina.ant.

StartTask”/>

 <taskdef name=”stop” classname=”org.apache.catalina.ant.

StopTask”/>

 <taskdef name=”undeploy” classname=”org.apache.catalina.ant.

UndeployTask”/>

 <!-- Executable Targets -->

 <target name= “create-war”>

 <property name= “war-base” value=”${local-tomcat}/Webapps/

myapp/”/>

 <war destfile=”${build}/myapp.war” Webxml=”${basedir}/WEB-INF/

Web.xml”>

 <fileset dir=”${basedir}/html”/>

 <classes dir= “${basedir}/WEB-INF/classes”>

 <exclude name=”index.html”/>

 <exclude name=”Web.xml”/>

 <exclude name=”myapp.war”/>

 </classes>

 </war>

 </target>

 <target name=”deploy” description=”Install Web application”

 depends=”create-war”>

 <deploy url=”${url}” username=”${username}”

password=”${password}”

 path=”${path}” war=”${build}${path}.war”/>

 </target>

 <target name=”reload” description=”Reload Web application”

 depends=”create-war”>

 <reload url=”${url}” username=”${username}”

password=”${password}”

 path=”${path}”/>

 </target>

 <target name=”undeploy” description=”Remove Web application”>

 <undeploy url=”${url}” username=”${username}”

password=”${password}”

 path=”${path}”/>

 </target>

</project>

���

���
��
���

�� �����������������
���
��
��

���
��
���
���������������������������� ��
���
���
����������������������������

������������������������������������

�������������������������������������� ��

����������������������������

���

��
���

JDJ.SYS-CON.com18 October 2005

n the past few years there has been a proliferation of
frameworks that allow for lighter, faster, and loosely
coupled Java projects. These frameworks not only let you
decouple your Java project from the application server

for unit testing, they also allow for more agile refactoring,
testing, and design techniques. This article will focus on tell-
ing the story of a large-scale refactoring effort implementing
Spring and Hibernate as the underlying infrastructure tools.
For those living under an abacus Spring is a J2EE framework
built to handle many of the plumbing issues on a typical J2EE
application. Hibernate is a popular Open Source Java object/
relational persistence framework.

Bad EJB, No Donut
 The last few years has produced a legion of J2EE applica-
tions tightly coupled to everyone’s two favorite saviors, the
Enterprise Java Bean (EJB) and the application container.
Developers have tied their proverbial hands by coupling
their code directly to these two Java mainstays. Many J2EE
applications have been over-engineered and deemed overly
complex by relying on these mainstays with few architectural
best-practice guidelines to follow. Articles have been written
and battle lines drawn around why and how this unfortunate
series of events came to fruition.
 Fortunately, there are now tools that provide ways to en-
able loose coupling and promote “simpler” architectures.
Loose coupling encourages things like unit testing, test-
driven development (TDD), and dependency injection. TDD
is an approach to development that combines test-fi rst de-
velopment and constant refactoring. Dependency injection
lets you inject dependent objects into your wired Java classes
at runtime.

The First Step Is Admitting You Have A Problem
 Everyone has probably experienced one or more applica-
tions built using the paradigm “‘the more J2EE components
the better.” One of these applications was delivered to my
doorstep for an extreme architecture makeover. The applica-
tion owner’s loose requirements were as follows:
• Scalable and reliable
• Flexible while resilient enough to support product

changes
• Easy to integrate and test

• Loosely coupled so that disparate groups can work on
separate components while simultaneously working on
the application as a whole

• Enabling high developer productivity

 Now, I understand that these requirements are ubiquitous
requests for most applications and are almost assumed out of
the gate. They can almost be seen as “infrastructure” require-
ments. Still, they’re requirements and the right tools need to
be used to satisfy them. Putting on my architect hat we came
up with fi ve problem areas that were symptoms of why these
requirements aren’t being met. From these symptoms we
derived their root causes and solutions. Table 1 is a matrix
showing our fi ndings.
 As you can see all of these issues had nothing to do with
how the application dealt with business logic. They were
solely infrastructure problems that had to be resolved for
the application to reach a higher level of software maturity.
Follow along as we see what an extreme makeover entails.

Patient Diagnosis – Condition Serious
 The application needing the makeover wasn’t small and
continued to grow every day. A high-calorie diet of EJBs,
deployment descriptors and other various J2EE infrastruc-
ture fi les was the norm. It had over 1,600 Java fi les, 50 entity
beans, and over 20 stateless beans (that served mainly as
entry points into the application for transactional boundar-
ies). The application’s main functions were order provision-
ing and workfl ow. It played an integral part in a service-
oriented architecture (SOA) that encompassed over 25 Web
Services. The software build and deployment cycle to the
application server took over 15 minutes. I guess you could
call it obese.
 There were zero out-of-container unit tests. The only exist-
ing tests were written using Cactus, which is a unit-testing
framework for executing server-side code. Loosely translated
that means that by choosing tools like Cactus your code has
to be deployed to the application server to be tested. I per-
sonally feel that tools like Cactus enable or even promote bad
habits like not having tests that can be run straight from your
integrated development environment (IDE).
 After reviewing all of the symptoms, a diet of Spring and
Hibernate was prescribed. These technologies were primar-

Franz Garsombke has been

developing and architecting

enterprise software solutions

in Colorado for the last

 ten years. Franz is a huge

proponent of open source

frameworks and is passionate

about developing and delivering

quality applications. He has

been published in many industry

publications and spoken at Java

user groups and conferences. He

is proud to be the co-founder of

a Java Bean mapping framework

(http://dozer.sourceforge.net).

fgarsombke@yahoo.com

by Franz Garsombke

I

Extreme Makeover:
 Architecture Edition

Large-scale refactoring with Spring and Hibernate

Feature

19October 2005JDJ.SYS-CON.com

ily chosen for their ability to solve given symptoms. The fol-
lowing is a diary of the patient’s miraculous transformation
from emergency room to recovery room. Each symptom was
typically remedied in one software iteration. The refactor-
ing project took about fi ve iterations over a period of fi ve
months, with between 2–4 infrastructure developers working
on it at any given time. As the refactoring took place, the
business logic developers went full steam ahead sprinkling
functionality goodness across the application. The refactor-
ing team’s core focus was solely on the infrastructure. A good
analogy is that the engines were changed out on the airplane
while it was still in fl ight.

Remember the Food Pyramid for Healthy Living
Symptom: Developers were interfering with each other
Root Cause: Poor code structure and no separation of
 concerns
Solution: Modularize the code base and adopt a layered
 architecture

 Having a tightly coupled code base can wreak havoc on
developer productivity. Interaction complexity is extremely
high and one code change can potentially affect multiple
areas of the code. The application can be classifi ed as brittle
and development typically takes much longer than in a
layered architecture. Building layers in your architecture will
lead to a well-defi ned separation of concerns allowing each
layer to be understood as a coherent whole. Interfaces are
typically used as the contract between each layer. By imple-
menting the Interface pattern your application can now
substitute each layer with an alternative implementation.
The benefi ts of this paradigm will be discussed in greater
detail in the next symptom. The fi rst step taken to modular-
izing the code base was to break the project into fi ve distinct
sub-projects. These sub-projects were compiled according to
their dependencies. This enforced that each layer only knew
about the ones below it. Figure 1 offers a before and after
picture of the logical code base.
 Notice that each distinct functional area dictates where the
layer boundaries are. These are not revolutionary concepts,
just good pragmatic architectural decisions. A loosely coupled
architecture makes adopting an Inversion of Control (IOC)
container like Spring much easier than not. The next symp-
tom’s solution would be hard if not impossible to implement
without a layered architecture.

Take Your Injections
Symptom: Unable to consistently run tests in a develop-
 ment environment or gather Web Services
 metrics.
Root Cause: Reliance on external Web Services availability
Solution: Dependency injection, aspect-oriented
 programming (AOP), and mock objects

 With the advent of SOA came the troublesome deal of
unit testing. As if testing wasn’t hard enough, you’re now
reliant on someone else’s application to execute unit tests.
Another problem with a SOA is the inability to audit your
service calls without intrusive metrics-gathering code
throughout your application. The fi rst order of business
was to create an external provider layer with well-defi ned
interfaces. Figure 2 shows the use of the façade pattern for
all of the external Web Service calls done by the applica-

tion. Classes in the external provider layer implement an
interface and are injected into plain old Java object (POJO)
business services.
 One of the things that Spring excels at is being an IOC con-
tainer. Spring uses a declarative approach to move an object’s
dependencies into an XML confi guration fi le.

<!-- Spring wired Business Service bean -->

<bean id=”businessServiceTarget” class=”example.

BusinessServiceImpl”>

 <property name=”provisionWebService”><ref bean=”provisionWebServ

ice”/></property>

 <property name=”orderDAO”><ref bean=”orderDAO”/></property>

</bean>

Table 1 Solution Matrix

Figure 1 Building layers

Extreme Makeover:
 Architecture Edition

JDJ.SYS-CON.com20 October 2005

 This example shows how a POJO business service class
would be defined in a Spring configuration file. This bean is
injected with two other beans called provisionWebService and
orderDAO. The injected provisionWebService bean imple-
ments the interface ProvisionIF. By having public getter()
and setter() methods on our business service we can literally
change the implementation of the provisionWebService attri-
bute at runtime. As long as we inject another class that imple-
ments the ProvisionIF interface our business service bean will
be content. This same pattern would apply to the order data
access object (DAO) injected bean.

public class BusinessServiceImpl implements BusinessServiceIF {

 private ProvisionIF provisionWebService;

 public ProvisionIF getProvisionWebService();

 public void setProvisionWebService(ProvisionIF provisionWebSer-

vice);

 private OrderDAOIF orderDAO;

 public OrderDAOIF getOrderDAO();

 public void setOrderDAO(OrderDAOIF orderDAO);

}

 Unit testing our business service class just got a lot easier.
Now we don’t have to rely on the provisioning Web Service to
be available for testing. We can use Spring to inject a stub class
that implements the ProvisionIF interface and returns canned
data. This class has to be a concrete implementation and
physically present as a Java class. If we don’t want a prolifera-
tion of stub classes we can always choose a mocking frame-
work like EasyMock. EasyMock provides mock objects for
interfaces and generates them on-the-fly using Java’s dynamic
proxy mechanism. Tools like dependency injection and mock
objects are a perfect fit for TDD since application code should
be written so that modules are testable in isolation. These two
paradigms for testing are shown graphically in Figure 2.
 We have unit-tested our code, but how do we capture live
metrics data in a production environment without writing co-
pious amounts of auditing logic? SOA has enabled distributed

architectures, but with that comes the headache of uniformly
capturing input/output data, storing error messages, measur-
ing request/response times, and correlating message calls. AOP
aids developers in handling cross-cutting concerns such as
security, auditing, logging, and transaction management. An
‘advice’ in Spring is an action taken by the AOP framework at a
particular point during the execution of a program. The most
typical types of ‘advice’ used in Spring are “around,” “before,”
“after,” and “throws.” Spring has modeled these types as inter-
ceptors that are done using a chaining mechanism. Spring lets
you attach N number of interceptors to a wired bean. In the ex-
ample in Listing 1 we’ve attached an “around” audit interceptor
to our bean that performs actions before and after the method
invocation. This interceptor is applied declaratively. Spring uses
dynamic proxies for AOP proxies but can also use CGLIB prox-
ies if it’s necessary to proxy a class rather than an interface.
 Our example shows our business service bean dynamically
proxied with a custom audit interceptor and a Hibernate inter-
ceptor provided by Spring. The audit interceptor is just another
Spring wired bean that implements a MethodInterceptor inter-
face. The audit interceptor will insert audit information into an
auditing database before and after our business service method
is invoked. This auditing information is now an integral part of
capturing application metrics and managers distribute reports
on a daily basis. The Hibernate interceptor is a class provided
by Spring that handles Hibernate session management.

It’s Dozerin’ Time
Symptom: Proliferation of Java Bean mapping classes
Root Cause: Need for transformation between internal do
 main objects to external Web Service calls
Solution: Creation of a framework for Java Bean mapping

 A side effect of an SOA is the passing of domain objects
between different systems. Typically, you won’t want inter-
nal domain objects exposed externally and won’t allow for
external domain objects to bleed into your system. Creating a
mapping framework is useful in a layered architecture where
you’re creating layers of abstraction by encapsulating changes
to particular data objects versus propagating these objects to
other layers (i.e., external service data objects, data transfer
objects, or internal service data objects). Most programmers
will develop some sort of mapping framework and spend
countless hours and thousands of lines of code mapping to
and from their many transfer objects.
 One of the many positive side effects of the refactoring
project was the birth of an Open Source project called dozer
(http://dozer.sourceforge.net). Dozer was extracted from the
refactored code base and made generic enough to handle
most real-world mapping scenarios. Dozer supports Java
Bean transformation, conversion, simple property mapping,
complex type mapping, bidirectional mapping, and implicit/
explicit mapping as well as recursive mapping.

Hibernate Through the Cold Winter Nights
Symptom: Scaling and performance issues
Root Cause: Persistence mechanism written with EJB entity
 beans
Solution: Data access layer with Hibernate and Spring
 integration

Feature

 Figure 2 Façade pattern

Before Refactor
After Refactor

Looking at a Layer – Façade pattern

Application Application

Application

Mock Mock Mock Mock

Spring Audit
Interceptors

External Provider
Layer

Refactor Enabler

Mock External
Provider Layer

Service 1

Service 2

Service 3

Service 4

Service 2

Service 1

Service 3

Service 4

JDJ.SYS-CON.com22 October 2005

 There have been many articles written about the reasons
why we shouldn’t use entity beans. Some of these reasons are
performance issues, an immature query language, and the
inability to unit-test and use entity beans as POJOs. Hiber-
nate solves all of these issues and more. Before implement-
ing Hibernate we created a technology-agnostic data access
object (DAO) layer. This simply means that if there was an
even newer, shinier persistence technology created tomor-
row we could replace Hibernate with a minimal amount of
refactoring. Some of the immediate benefits of using Hiber-
nate are:
• The entire DAO layer can be tested without an application

server
• First- and second-tier caching
• Support for association, inheritance, polymorphism, compo-

sition, and the Java collections framework

 Spring provides integration with Hibernate for DAO
implementation support, resource management, and trans-
action management. Spring provides a Hibernate intercep-
tor class that manages the Hibernate session throughout
a transaction by using Spring’s AOP proxying. As a devel-
oper you just need to apply that interceptor to any of
your Spring wired beans. Spring also lets you define a
Hibernate session factory object. An example is presented
in Listing 2.
 Notice that the session factory is injected with a bean
called dataSource. The dataSource bean can be injected
with any class that implements the javax.sql.DataSource
interface. Spring has the capability of loading different
context files based on different testing scenarios. If you’re
running tests in an application container the dataSource
bean can be defined as a container-based JNDI object.

<!-- In-Container implementation of a DataSource -->

<bean id=”dataSource” class=”org.springframework.jndi.

JndiObjectFactoryBean”>

 <property name=”jndiName”><value>jndi_datasource</value></prop-

erty>

</bean>

 If you’re running tests out of the container the dataSource
bean can be a simple JDBC connection.

<!-- Out of container implementation of a DataSource -->

<bean id=”dataSource” class=”org.springframework.jdbc.datasource.

SingleConnectionDataSource”>

 <property name=”driverClassName”><value>someDriverName</value></

property>

 <property name=”url”><value>myUrl</value></property>

 <property name=”username”><value>user</value></property>

 <property name=”password”><value>password</value></property>

</bean>

 By looking at this one example the power of dependency
injection becomes truly apparent. One slight configuration
change and we’re one step closer to running our entire suite
of unit tests without an application server.

It’s Springtime, Get ‘Outside’ and Enjoy the Weather
Symptom: Code-level unit testing was taking about
 10-15 minutes for one test
Root Cause: Code was completely dependent on the
 application server
Solution: Decoupling business logic from the EJBs
 allowed for out-of-container testing on every
 Java class

 At this stage of the game the prognosis is getting better
for our refactored application. We’ve successfully layered
our architecture, applied dependency injection to move
our object’s dependencies into a configuration file, used
AOP to audit our Web Service calls, used a Java Bean map-
ping framework, and replaced all the entity beans with
Hibernate. One last step has to be implemented before our
entire suite of unit tests can be tested out- of-container.
Before Spring, EJBs were seen as the panacea for infrastruc-
ture details like security and transaction management.
Most developers chose stateless session beans to handle
all of their container-managed transactions. They also
probably chose to store their business logic in these same
beans, thus coupling them to the container with no chance
of writing simple unit tests. Figure 3 offers a solution to this
problem.
 All of the EJB business logic has been moved into a
Spring wired bean called BusinessService, which is a
POJO. The EJB simply retrieves the bean out of the Spring
context and calls business methods on it. In this particular
example the BusinessService bean is injected with two other
Spring wired beans. It’s also wrapped with a custom audit
interceptor as well as a Spring Hibernate interceptor. The
EJB still manages the JTA transaction while the Hibernate
interceptor does the Hibernate session management. The
only reason that stateless EJBs weren’t discarded altogether
was for their RMI remoting capabilities. In future iterations
we plan to remove the stateless EJBs altogether. Spring has
transaction interceptors that can simulate the transactional
work of a container-managed EJB.
 Unit testing was made painless by using Spring’s
HibernateTransactionManager class. Using that class we
were able to have our JUnit test cases simulate the transac-

Feature

 Figure 3 Business services with EJBs

JDJ.SYS-CON.com24 October 2005

tion management and Hibernate session management
capabilities performed in the container. Getting
full transaction and Hibernate session support out-
side of the container lets your IDE mimic testing inside
the container. Figure 4 graphically represents the unit-
testing transformation.

You Reap What You Sow
 At the end of the refactoring project many tangible results
had been achieved:
• Greater visibility and control in an SOA by using

Spring’s simple AOP mechanism for capturing auditing
metrics

• The entire code base can be tested outside of the con-
tainer using Spring’s dependency injection model and
Hibernate for the persistence layer

• Code is much more maintainable with a loosely coupled
layered architecture

• Refactoring is much easier with a baseline of out-of-con-
tainer unit tests in place

• Dependency injection helps immensely in mocking out
external service layer calls

• Testing becomes much easier, meaning it’s more likely to
happen

 On any refactoring project you really do reap what you
sow. Refactoring has an incredible return on investment
in the short- and long-term future of your application. A
word of caution before using any ‘new’ technologies: create
a prototype application of what you want your ‘end-state’
architecture to look like. This prototype should be the
proving grounds for all of the gory technical details and
answer many hypothetical questions at two in the morn-
ing. Without our prototype, this refactoring project would
have failed.

Summary – Prognosis Good
 Applications that choose frameworks that allow for loose
coupling can start to shed some of their J2EE baggage and
leave a lot of the plumbing to tools like Spring. The days
of being tightly coupled to your application server for unit
testing are quickly slipping away. By using a pragmatic ap-
proach to Open Source tool selection many rewards

will be instantly achieved. Applications will be more flexible
and developer productivity and efficiency should increase
dramatically. Not only do these tools help in decoupling,
but they also tend to make applications a lot simpler by
removing dependencies on J2EE containers. After having
the pleasure of working on a loosely coupled flexible
architecture you will wonder how any work got done
 before.

References
• AOP: http://www.springframework.org/docs/reference/

aop.html
• EasyMock: http://www.easymock.org/
• Dependency Injection: http://www.martinfowler.com/arti-

cles/injection.html
• Dozer: http://dozer.sourceforge.net
• Hibernate: http://www.hibernate.org/
• Spring: http://www.springframework.org/
• Test Driven Development: http://www.agiledata.org/

essays/tdd.html

Feature

 Figure 4 Decoupling code from the container

Before Refactor After Refactor

Decoupling Code From the Container

Application Server
Application Server

EJB

Business
Logic

EJB

Business
Logic

EJB EJB

Business
Logic

Business
Logic

Cactus In-Container Tests

JUnit Tests

Listing 1
<bean id=”businessService”

class=”org.springframework.aop.framework.

ProxyFactoryBean”>

 <property name=”proxyInterfaces”><value>example.

BusinessServiceIF</value></property>

 <!-- this property determines which bean to dynami-

cally proxy -->

 <property name=”target”><ref local=”businiessServiceTa

rget”/></property>

 <property name=”interceptorNames”>

 <list>

 <value>auditInterceptor</value> <!-- Custom

Interceptor -->

 <value>hibernateInterceptor</value> <!--

Interceptor provided by Spring -->

 </list>

 </property>

</bean>

<bean id=”auditInterceptor” class=”example.

AuditInterceptor”>

 <property name=”auditDAO”>

 <ref bean=”auditDAO”/>

 </property>

</bean>

<bean id=”hibernateInterceptor” class=” org.springframe-

work.orm.hibernate.HibernateInterceptor

“/>

Listing 2
<!-- Hibernate Session Factory -->

<bean id=”sessionFactory” class=”org.springframework.orm.

hibernate.LocalSessionFactoryBean”>

 <property name=”dataSource”><ref bean=”dataSource”/></

property>

 <!-- Hibernate mapping files -->

 <property name=”mappingResources”>

 <list>

 <value>example/Audit.hbm.xml</value>

 </list>

 </property>

</bean>

JDJ.SYS-CON.com26 October 2005

ike most other self-respecting developers I had also
read the GoF book, including the section on the visitor
pattern. However, when a colleague came over to me
with a question, I could not initially justify the com-

plexity of the example code I saw in the book. What follows is
a discussion of why the visitor pattern is the way it is.

Brief Review of the Pattern
 The defi nitive description of the pattern is in the GoF book
Design Patterns, Chapter 5 (pp 331-344)(see References sec-
tion). The Wikipedia has a concise and good description, which
formed the basis for my brief review here. The visitor pattern is
classifi ed as a Behavioral pattern, so the thing to notice is the
way in which the classes and objects interact and distribute
responsibility. A typical application of this pattern occurs in the
following scenario: we have a number of elements in an object
structure (common structures include trees & lists) and we
want to perform a bunch of disparate operations (e.g. printing
or cloning each element) on the elements of the structure.
 The visitor pattern is a way of separating the operation
from the object structure and a way of collecting together the
different implementations of an operation for different kinds
of elements in the object structure. A Visitor class is created
which knows how to perform a particular operation on the
different kinds of elements in the object structure. Each type
of element in the structure defi nes an accept() method that
can accept any kind of Visitor. The visitor is passed to each el-
ement in the structure in turn, by calling its accept() method
and the Visitor then performs the operation on the visited
element. One important consequence of this separation of
object structure and operation is that we can later add a new
operation (a new kind of Visitor) without having to modify
the element classes of the object structure.
 Each type of Visitor defi nes several visit()methods, one for
each kind of element. The basic insight is that the precise set
of instructions to execute (i.e. the method or function to call)
depends on the run-time types of both the Visitor & the vis-
ited element. Java only lets us call different methods based on
the run-time type of one object (via virtual functions), so the
pattern advocates a clever solution: The second dependency
on the type of element visited is fi rst resolved by polymorphi-
cally calling the accept() method of the visited element. ac-
cept() then resolves the fi rst dependency by turning around
and polymorphically calling the visit()method for its class.

An Example
 Before this description gets too confusing, let us study
the pattern in the context of a concrete problem: Let us say
we need to traverse a list collecting node-specifi c informa-
tion. The list has two kinds of nodes, say, Red and Black,
which needed to be processed differently. It seems like an
ideal application for the visitor pattern. Listing 1 shows
the code. (All code samples in this article use a J2SE 5.0
compatible compiler.)
 To me and my colleague, this initially seemed like an
overly complex solution for a simple problem. NodeVisi-
tor.doVisit() calls into the Node’s accept methods, which
simply delegates back into NodeVisitor. Furthermore, the
accept() methods of RedNode and BlackNode are almost
identical. Finally, notice that if we now add a GreenNode
class, we need to add a new visitGreen() method to the
NodeVisitor class and re-compile it (not to speak of the
almost redundant implementation of accept() in the
GreenNode class). Ugh! This does not seem kosher by any
OO standard.

The Need for the accept() Methods
 Novice armchair Java developers might ask why we can’t
do something simpler, like Listing 2, for example, without
touching the Node interface, or the classes RedNode and
BlackNode which implement it.
 Listing 2 has two signifi cant differences from the previous.
First, there is no redundant method (namely accept()) for
each node type to implement. Second, we use function name
overloading for the visit() implementations, thus enabling the
“clever” foreach loop, which iterates over each node and calls
the appropriate overloaded version of visit() depending on the
type of the current element. With this, we hope to contain all
the visiting logic within NodeVisitor.
 Alas, real developers have a more diffi cult job than arm-
chair developers! If you are using a language like Java or C++,
an overloaded function name like visit() has to get resolved at
compile time. Thus line 6.iii will not compile because none
of the visit() methods provided in NodeVisitor know how to
accept a generic “Node” as argument.
 For line 6.iii to work the way we want it to, the decision on
what operation needs to be performed has to be delayed until
we can determine at runtime the type of the node n being
examined in the current iteration of the for-each loop.

Nishanth Sastry is a software

developer at IBM working

on the WebSphere Portal &

Workplace family of products.

He has a Masters degree in

Computer Science from the

University of Texas at Austin.

He enjoys well-written code

& fall in New England, among

other things. He lives in

Concord, Mass.

nishanth_sastry@us.ibm.com

by Nishanth Sastry

L

Deriving the
 Visitor Pattern

A review and discussion

Feature

27October 2005JDJ.SYS-CON.com

 Traditional OO languages (Java, C++ etc) provide us with
one standard tool for delaying function resolution until run-
time: virtual functions. Thus, in Listing 1, 6.iii is modified to a
virtual function call n.accept(nv). So the actual function that
gets called is decided at run-time. The version called then
delegates work by invoking the right version of NodeVisitor.
visit().

So Why Not Just Use Plain Vanilla Inheritance?
 The explanation I just gave is good, but not good enough.
I can almost hear you ask: why doesn’t accept() do the work
itself? Why does it have to delegate back to NodeVisitor? There
are three reasons:

1. Accumulating state: If you read the problem I presented

closely, you will notice that I specified a need to collect
node-specific information. Since the doVisit passes the
same NodeVisitor instance to each accept(), the visitor
can be used to accumulate state across the different Node
objects. For example, say you have an Employee HR appli-
cation where the Red nodes represent employees, the
Black nodes represent managers, visitRed() calculates the
pay raises for programmers, and visitBlack the pay raises
for managers. The NodeVisitor nv could print a report of
the total increase in salary expense at the end of the for
loop.

2. Supporting more than one visitor (the need for double
dispatch): Say the next version of your Employee HR appli-
cation needs to add a new HRPolicyVisitor that checks for
compliance with some HR policy and the implementation
is different for managers and programmers.

 To accommodate both the types of Visitors, we intro-
duce an additional layer of indirection – an abstract
EmployeeNodeVisitor interface with virtual visitXXX() func-
tions for each type of element to visit, namely visitProgram-
mer() & visitManager(). The old PayRaiseVisitor and the new
HRPolicyVisitor both implement EmployeeNodeVisitor.
The decision on which version of visit() gets called now
gets determined by a two-step process. The first step is
as before. The node type of the visited element n in the
foreach loop determines which version of the virtual func-
tion accept() gets called. In the second step, the type of the
EmployeeVisitor passed in to accept() determines the (virtu-
al function) version of visitXXX() called. The source files that
come with this article (These can be downloaded at ???)
show the skeleton of this implementation. Figure 1 illus-
trates the sequence of calls from both doPayHike(), which
uses a PayRaiseVisitor to raise the pay of each employee,
and doEnforcePolicy() which uses a HRPolicyVisitor to
check HR policy compliance.

 This technique, where the types of two objects are
used to select the operation invoked is known as double
dispatch. By contrast, single dispatch uses the type of one
object to select the operation invoked. One known imple-
mentation of single dispatch is virtual functions. Since
Java and C++ support only this form of single dispatch, the
pattern simulates double dispatch by using single dispatch
twice!

3. Separation of concerns: A concern is any focus of interest
in a program. A classic tenet of good software design is that
the different concerns of a program must be broken down
into separate modules that have little or no overlap. In the
Employee HR program , visitProgrammer and visitManager

of a particular visitor have more commonality than the two
visitProgrammers of the different visitors or the two visit-
Managers of the different visitors. In fact, the methods in a
given visitor may even share state information as described
in 1 above. This makes the Visitor pattern a good way to
organize code by separation of concerns.

 Notice also that as a consequence of this way of organizing
code, it is extremely easy to add a new visitor operation, but
adding a new kind of node requires adding a new visitXXX
method to all the Visitors.
 If none of the above three reasons apply, you would be bet-
ter off not delegating the work of accept() back to a separate
visitXXX() method.i.e. plain vanilla inheritance would be more

 Figure 1 Sequence diagram of an application of the Visitor pattern with two visitors & two kinds of nodes to visit

RunProgram: HRPolicyVisitor: PayRaiseVisitor: Manager: Programmer:

1: doPayHike(empList) 1.1: accept(this)

1 1. 1: visitManager(this)

1.3: accept(this)

1.3.3: visitProgrammer(this)

 <<return>>
2: doPayHike(empList)

3: doEnforcePolicy

3.3: accept(this)

3.1.1: visitManager(this)

<<return>>
4: doEnforcePolicy

3.3.1: visitProgrammer(this)

3.1: accept(this)

JDJ.SYS-CON.com28 October 2005

appropriate than an application of the Visitor pattern. On the
other hand, if any of the above reasons apply, the Visitor pattern
would be a good solution for you.

But This Still Does Not Preclude Overloading the visit() Methods...
 You might still have one lingering question about Listing 1: Why
can’t we use function name overloading instead of the different
visit<<NodeType>>() methods (as in Listing 3)?
 The short answer is that nothing prevents you from doing this;
Listing 3 is just as correct as Listing 1 For the last word, however, I
will have to defer to the GoF, who write the following in a footnote:

 We could use function overloading to give these operations
 the simple name, like Visit, since the operations are already
 differentiated by the parameter they’re passed. There are
 pros and cons to such overloading. On the one hand, it rein-
 forces the fact that each operation involves the same analy-
 sis, albeit on a different argument. On the other hand, that
 might make what’s going on at the call site less obvious to
 someone reading the code. It really boils down to whether you
 believe function overloading is good or not [in this situation].

Conclusion
 In this article we reviewed the Visitor pattern and “derived”
it from an armchair sketch of the functionality we wanted:
the ability to accumulate state over elements of an object struc-
ture, the separation of the operations from the object structure,
and the ability to add new operations without recompiling the
element types. These requirements called for a “double
dispatch”; i.e. the precise method to call for “visiting” each
element in the structure depended on two runtime types:
the type of Visitor and the type of the visited element.
The Visitor pattern was shown to be a way to simulate
double dispatch using virtual functions, a form of single
dispatch.

References
• Gamma, et al. Design Patterns: Elements of Reusable

Object-Oriented Software, 1995, Addison-Wesley,
Reading, MA.

• Wikipedia contributors, “Visitor pattern,” Wikipedia:
The Free Encyclopedia, http://en.wikipedia.org/wiki/
Visitor_pattern (accessed Aug 19, 2005)

Feature

Listing 1: A visitor for Red & Black nodes in a list
class NodeVisitor {
 public void visitRed(RedNode n) {
 // do red node-specific things...
 }
 public void visitBlack(BlackNode n) {
 // do black node-specific things...
 }

 public static void doVisit(List<Node> list) {
 NodeVisitor nv = new NodeVisitor();
 for (Node n:list) {
 n.accept(nv);
 }
 }
}

interface Node {
 void accept(NodeVisitor visitor);
}

class RedNode implements Node {
 //... other methods
 public void accept(NodeVisitor visitor) {
 visitor.visitRed(this);
 }
}

class BlackNode implements Node {
 //... other methods
 public void accept(NodeVisitor visitor) {
 visitor.visitBlack(this);
 }
}

Listing 2: “Simpler” (erroneous) implementation of NodeVisitor
1. class NodeVisitor {
2. public void visit(RedNode n) {
 // do red node-specific things...
3. }
4. public void visit(BlackNode n) {
 // do black node-specific things...
5. }

6. public static void doVisit(List<Node> list) {
i. NodeVisitor nv = new NodeVisitor();
ii. for (Node n:list) {
iii. nv.visit(n);
iv. }
7. }
8. }

Listing 3: Listing 1 with overloaded visit methods
class NodeVisitor {

 public void visit(RedNode n) {

 // do red node-specific things...

 }

 public void visit(BlackNode n) {

 // do black node-specific things...

 }

 public static void doVisit(List<Node> list) {

 NodeVisitor nv = new NodeVisitor();

 for (Node n:list) {

 n.accept(nv);

 }

 }

}

interface Node {

 void accept(NodeVisitor visitor);

}

class RedNode implements Node {

 //... other methods

 public void accept(NodeVisitor visitor) {

 visitor.visit(this);

 }

}

class BlackNode implements Node {

 //... other methods

 public void accept(NodeVisitor visitor) {

 visitor.visit(this);

 }

}

JDJ.SYS-CON.com30 October 2005

n the first two articles of this series
(see http://java.sys-con.com/
read/108260.htm and http://java.
sys-con.com/read/124664.htm), I

started thinking aloud about auto-
mating my gas station using various
Java-related technologies. This time,
I’m trying to figure out what IDE and
Web framework to use.

How Many Java Web Frameworks
Does Mankind Need?
 Being a consultant in my previous
life, I worked on different projects
for various clients. Each time I joined
a project I had to learn a new Java
technology that promised to make my
life easier. Here it comes again! Now I
need to select a Web framework. The
good part is that literally all of them
are free (is it the right word? I need
to do some more reading on all these
public licenses).
 Since a gas station is the best place
for networking, I started to ask driv-
ers/programmers to recommend a
good Java Web framework. By the way,
while pumping gas, you can notice
things you’ve never known before. For
example, work visa holders from India
usually drive Toyotas and Hondas.
Eventually, they switch to something
BMWish. Anyway, I was able to collect
more than 50 (!) names of Java Web
frameworks that are available today.
Are we serious? I understand the ben-
efits of the free market and competi-
tion, but isn’t it a little too much? One
Mercedes driver from China told me
that their government restricts the
number of kids per family. Should we
penalize anyone who’s even think-
ing of creating yet another Java Web
framework?
 Let me use my proven way of find-
ing the right software. Some people
just throw the dice, but I’d rather go
to dice.com, which is a major IT job
search portal in the U.S. Just start
entering the names of the frameworks

one by one, perform the search, and
write down the counts of ads that
look for people with such skills. The
leaders are Struts: 1350, Spring: 377,
and JSF: 230. For those who don’t like
this approach, I’ll mention a couple
of other frameworks that people like
to blog about: Tapestry, Cocoon, and
Wicket.
 Car drivers also form two major
groups: pragmatic people drive Lexus,
Toyotas, and Hondas. But there are
people who will never betray Mer-
cedes, Jaguar, or Land Rover even
though they break at least once a year.

IDE
 People who work at my gas station
came to America with no money.
When they need to get their first TV
set, they don’t buy it, but pick it up off
the streets. That’s right, when people
in our neighborhood need to get rid of
an old TV, they just take it out on the
street, and the garbage truck picks it
up…unless my guys do it sooner. My
Pakistani guy revealed a secret: if the
TV set is broken, people who put it out
cut the power cord off. This way you
won’t waste time bringing it home.
Nice!
 These days it works the same way
with commercial software. When a
company has a dead-end product,
it gives it away to the open source
community. The only difference is
that people take their TVs out of the
house quietly, while the software
vendors make a loud noise about
their donations. First you read a title
like “BEA has contributed WebLogic
Workshop IDE to the Beehive Apache
project.” How sweet! But a little later,
“BEA decided to join the Eclipse
platform and build another version
of Workshop as a plugin with some
functionality that exists in its current
version.” That’s right, just dump
unwanted software onto the open
source community. They have plenty

of handy people there, who might
take it apart and use some nice ideas
like the use of annotations in the
pre-Java 5 era. I worked with Web-
Logic Workshop; it’s slow, uses pro-
prietary constructs, and, if you start
a J2EE project with it, you’re stuck:
there is no way to port it to any other
environment.
 Technically, there are only two free
Java IDEs to consider: NetBeans (Sun
Microsystems, Inc.) and Eclipse (The
Rest of the World, Inc.). Based on
all the reviews and demos I’ve seen,
they both are robust and provide
similar functionality. I tried to read
blog postings to pick one of these,
but the bloggers usually fight over
particular features, like “Refactoring
in NetBeans is more powerful than in
Eclipse.” So? My gut feeling tells me
that I should go with the Eclipse IDE,
which has an open architecture and
an abundance of online documenta-
tion and support. If I had several
thousand dollars, I could have paid
for a fat report that would analyze all
available Java IDEs, but I’m sure on its
last page it would have just one word:
Eclipse. Even Borland gave up: their
first Eclipse-based product called
Peloton will be available in the first
half of 2006.
 Actually, to be fair, I need to admit
that there are people who despise
everyone who’s using anything other
than vi or Emacs, but let’s not even go
there. We need to play it safe.

Help
 Thank you to all who responded
to the first two articles and provided
some good ideas. I’m planning to
make my next column a discussion of
your feedback. As always, I’m asking
for your suggestions in automating
of my small business. Just share your
thoughts at the online version of this
article at http://java.sys-con.com/
read/136518.htm.

by Yakov Fain

Web Frameworks and IDE

I

Yakov Fain is a J2EE architect

and creator of seminars

“Weekend with Experts”

(www.weekendwithexperts.

com). He is the author of the

best-selling book The Java
Tutorial for the Real World and

an e-book Java Programming for
Kids, Parents and Grandparents.

Yakov also authored several

chapters for Java 2 Enterprise
Edition 1.4 Bible.

yakovfain@sys-con.com

Part Three

Yakov’s Gas Station

JDJ.SYS-CON.com32 October 2005

n a market that is defined by today’s tight IT budgets,
saving on software licenses can mean the difference
between financial failure and success for a software
development project. While our corporate clients use
commercial-grade application servers, we sometimes

find ourselves in a situation where there are no funds
for developer licenses of these commercial application
servers. Out of necessity, we developed and implemented
a process that allows for development on top of an open
source stack, while production delivery relies on a com-
mercial application server.
 Initial concerns that implementation differences and
the different runtime environments would lead to issue-
prone deployments turned out to be unjustified. While
different application servers do indeed show incompatibil-
ities, we found that we were able to avoid common pitfalls
through preparation and disciplined coding. In this article,
we will explain what it takes to develop complex Web ap-
plications with Eclipse and Tomcat and to deploy these ap-
plications to a WebSphere-based production environment.

Introduction
 It all started when a client requested a solution for the
WebSphere application server platform, but did not want to
cover the cost of WebSphere Studio licenses for the devel-
opment team. We looked for alternatives and found one in
Eclipse and Tomcat.
 The team initially feared that the different implementation
of core functionalities provided by application server con-
tainers would create application portability issues. The main
areas of concern included transaction management, security,
and application deployment.
 Because we used IBM’s Tivoli Access Manager and Web-
SEAL Reverse Proxy in production, but relied on Tomcat’s
built-in authentication in development, there was concern
that having only a subset of the target security infrastructure
available in development would limit our ability to build a
security service layer for Tivoli.
 These risks had to be addressed and dealt with. At that
time it seemed that the cost of doing so would outweigh the
potential savings from software licenses. However strong this
concern was, it was difficult to convey it to a client who was
eager to start the project, and so we embarked on the open
source endeavor.

Developing with Eclipse and Tomcat
 Once properly configured, Eclipse can be a powerful
hub for developing your application. It can automatically
generate content and code such as class header com-
ments, implementations of functions from interfaces,
variable getters and setters, and more. These time-saving
tools, along with the multitude of available plug-ins
(e.g., for Tomcat, VSS, and Struts) allowed us to spend less
time performing repetitive tasks and more time actually
developing.
 We created a project in Eclipse with its root reflecting
the root of our Web application, which would later be
packaged into a WAR (Web Application Archive), then
an EAR (Enterprise Archive), along with the required
application configuration files, for deployment to Web-
Sphere. This root directory was located within the “we-
bapps” directory of our Tomcat installation, which
is the default directory that Tomcat allocates for Web
applications.

Sumitra Chary is a senior

software engineer at

Molecular. Her career has

spanned both academic and

commercial worlds. These have

included software systems for

X-ray observatory missions,

network management,

marketing automation, and

enterprise Web applications.

schary@moecular.com

by Sumitra Chary, Christian Donner,
Jim Lamoureaux, Ilia Papas, and Dita Vyslouzil

I
The goal: cross-platform
 Java development

Feature

 Table 1 Development Stack

 Table 2 Production Stack

33October 2005JDJ.SYS-CON.com

 Although the Tomcat plug-in for Eclipse does not add
any new functionality to either product, it greatly eases
the integration of the two and saves time by consolidating
common tasks in one place and reducing the need for mul-
titasking. Debugging in Eclipse is fairly robust, allowing
the user to step through code and to evaluate expressions
on the fly. The JDK we were using (IBM 1.3.1) does not sup-
port hot-replacing of classes, but new code is loaded on an
application server restart, which does not take much time.
 It should be mentioned that Tomcat does not support
Enterprise beans. We decided against Enterprise beans
because the Spring framework provides similar features
without the platform dependencies.
 The Microsoft Visual SourceSafe plug-in integrates
well into the Eclipse interface, allowing for comments on
both checkout and check-in. It also provides a report of
all files checked out within the project, the owner, and
what actions are being performed on them. The only gripe
is that when checking-in files, it does not remember the
checkout comment, so it must be reentered manually.
 There are a few aspects to take into consideration when
bridging the gap between the development and produc-
tion environments. User authentication, handled by Tivoli
Acess Manager in production, was handled by the tomcat-
users.xml file located in the config directory. Roles, users,
and passwords are recorded in this file. Through the use
of configuration files and Ant, we were able to easily
change server locations and credentials, as well as any
other variables that may need to change when code is

moved between environments. Tomcat tends to be much
more forgiving when it comes to parsing configuration files
such as the web.xml and tag library definitions, whereas
WebSphere will either load the application in a crippled
state or not at all. The dtds must be adhered to in order to
avoid this issue.

Production Environment
 The production environment was a load-balanced
configuration of two application servers and several
other servers hosting the security environment (Tivoli
Access Manager) and the database (see Tables 1 and 2
and Figure 1).

Multiple Environments
 In most software development projects, to support
the life cycle of the application, there are multiple environ-
ments into which the code must be deployed (see Figure 2).
 When the application is deployed from one environment
to another, various things need to change, such as data-
base data source information and LDAP server informa-
tion. We used Ant’s property filtering capability to generate
runtime resource files, such as properties files and Spring
application context files, with the correct information ap-
propriate to each environment.
 We recommend the following steps to make this work:
1. Define a deploy.host property and assign a value

according to the hostname of the target deployment
environment

Christian Donner is a senior

consultant and technical

architect at Molecular.

He is a Certified Sun

Enterprise Architect for

Java 2 and devotes much

of his career to helping

clients integrate complex

Web applications with

their grown corporate IT

infrastructures. Christian

has 20 years of

experience in software

development

cdonner@molecular.com

The goal: cross-platform
 Java development

JDJ.SYS-CON.com34 October 2005

2. Create a separate properties file for each host with envi-
ronment-specific values. For example, JDBC property
definitions for serverA might be defined in serverA.prop-
erties as follows:

#

Database overrides

#

jdbc.driver.classname = net.sourceforge.jtds.jdbc.Driver

jdbc.driver.type = jtds

jdbc.server.type = sqlserver

jdbc.server.port = 1433

jdbc.server.host = db01

jdbc.username = db01-user

jdbc.password = db01-pwd

3. Create Ant filter token definitions that use the environ-
ment-specific properties:

<filterset id=”project.filter.tokens”>

 <!-- DB Service(s) -->

 <filter token=”JDBC.DRIVER.CLASSNAME” value=”${jdbc.driver.class-

name}”/>

 <filter token=”JDBC.DRIVER.TYPE” value=”${jdbc.driver.

type}”/>

 <filter token=”JDBC.SERVER.TYPE” value=”${jdbc.server.

type}”/>

 <filter token=”JDBC.SERVER.HOST” value=”${jdbc.server.

host}”/>

 <filter token=”JDBC.SERVER.PORT” value=”${jdbc.server.

port}”/>

 <filter token=”JDBC.USERNAME” value=”${jdbc.username}”/>

 <filter token=”JDBC.PASSWORD” value=”${jdbc.password}”/>

</filterset>

4. Create a properties file containing the filter tokens.
Ant will substitute actual values for the tokens:

jdbc.driverClassName = @JDBC.DRIVER.CLASSNAME@

jdbc.url = jdbc:@JDBC.DRIVER.TYPE@:@JDBC.SERVER.TYPE@://@JDBC.

SERVER.HOST@:@JDBC.SERVER.PORT@

jdbc.username = @JDBC.USERNAME@

jdbc.password = @JDBC.PASSWORD@

5. Place a copy task in some target that invokes the filter
token substitution (<filterset>):

<target name=”copy-files” depends=””>

 <!-- Copy, with overwrite, properties and xml files

 - so that configuration changes via Ant build properties

 - will always be picked up.

 -->

 <copy todir=”${web.build.dir}” overwrite=”yes”>

 <fileset dir=”${web.src.dir}”>

 <include name=”**/*.properties” />

 <include name=”**/*.xml” />

 </fileset>

 <filterset refid=”project.filter.tokens” />

 </copy>

</target>

 When the application is packaged, it looks in (among
other places) ${web.build.dir} for files to include in the
Web application archive (WAR). There, it will find the
generated runtime resources with environment-specific
values.

Spring
 The Spring Framework was very useful in allowing us
to develop our application in a container-agnostic fashion.
We took advantage of several of the many features of
Spring.

1. Service Location
 We used Spring application contexts for the integration
with Struts, for deployments to Tomcat and WebSphere,
in standalone utility applications, and even in JUnit tests.
Spring allowed us to standardize how our service objects
were found and initialized across all uses of those objects
in a compelling way.

2. Bean Life Cycle and Dependency Management
 By using Spring’s application contexts, we successfully
avoided stateless session beans that would have caused
deployment issues across containers (not to mention
the fact that Tomcat would not have readily supported
EJBs).

Feature

 Figure 1 Development and Production Stack

 Figure 2 Multiple Environments

Jim Lamoureaux is a senior

consultant and software

architect at Molecular. His

interests include object-oriented

design and implementation,

programming languages,

and software process. Jim is

a Sun Certified Programmer

for the Java 2 Platform. He

currently lives in Southern New

Hampshire.

jim@molecular.com

35October 2005JDJ.SYS-CON.com

 We used Ant (Ant 1.6+) to manage configuration, builds, and deployments from
local development environments to the integration server, from there to the stag-
ing server, and finally to production. The ant scripts needed to handle two main
server differences:

1. The WEB-INF/lib directory had to be populated with any JARs not provided by

the application server. Specifically, our Tomcat environment required the option-

al JDBC 2.0 Package while WebSphere already came with the necessary classes

installed.

2. The security-* elements of the Web deployment descriptor (web.xml) needed to

include security-role definitions for deployments to Tomcat. In WebSphere, the

security roles were defined at the enterprise application level (application.xml).

 The solution was to treat any environment dependencies through parameters
and to create configuration files that contained all settings for a server type. We
laid the groundwork by explicitly providing a value for the server.type Ant property:

<!-- Server Type property-override customizations (if any) -->

<property name=”server.type.config.file” location=”${build.modules.home}/

deployment/servertypes/${server.type}.properties”/>

<echo message=”server.type.config.file=${server.type.config.file}”/>

<property file=”${server.type.config.file}”/>

 Having a separate properties-file for each server type was helpful, because it
made the deployment process agnostic of the type of server that we deployed
to. The main property set in each of these files was deploy.tomcat or deploy.
websphere (essentially deploy.server-type). Having these properties allowed us to
configure the build-war macro according to the server type to handle the inclusion/
exclusion of the JDBC 2.0 optional package (see Listing 1).

 Only one of the war-* targets is being called depending upon whether the
deploy.websphere property is defined or not. This results in a macro definition of
build-war, which has been configured for the target server.
 Similarly simply, the appropriate definitions for the security-* elements of the
web.xml are handled according to the value of server.type.

<!-- Copy the environment-specific version of the web-security.xml XDoclet

merge file -->

<target name=”web-security-websphere” if=”deploy.websphere”>

 <copy file=”${web.merge.dir}/was-web-security.xml”

 tofile=”${web.merge.dir}/web-security.xml” overwrite=”yes”/>

</target>

<target name=”web-security-tomcat” unless=”deploy.websphere”>

 <copy file=”${web.merge.dir}/tomcat-web-security.xml”

 tofile=”${web.merge.dir}/web-security.xml” overwrite=”yes”/>

</target>

 The targets web-security-tomcat and web-security-websphere are then named as
dependencies in other targets that use the XDoclet webdoclet task (which uses the
web-security.xml deployment descriptor snippet).

Listing 1: Ant macro for building a WAR file
<!-- Call the build-war macro that is defined by the dependencies
-->
<target name=”package-web”
 depends=”webdoclet,war-tomcat,war-websphere”>
 <build-war/>
</target>

<!-- Setup the build-war macro for a tomcat deploy -->
<target name=”war-tomcat” depends=”” unless=”deploy.websphere”>
 <macrodef name=”build-war”>
 <sequential>
 <war destfile=”${web.dist.dir}/${web.war}”
 webxml=”${web.build.dir}/WEB-INF/web.xml”
 compress=”true”>
 <fileset dir=”${web.build.dir}” excludes=”**/web.xml” />
 <webinf dir=”${struts.dir}” includes=”validator.
xml,*.dtd” />
 <lib dir=”${cfmx.dir}” includes=”*.jar” />
 <lib dir=”${commons-lang.dir}” includes=”*.jar” />
 <lib dir=”${dist.dir}” includes=”${dist.name}”
/>
 <lib dir=”${jstl.lib.dir}” includes=”*.jar” />
 <lib dir=”${struts.dir}” includes=”*.jar” />
 <lib file=”${commons-dbcp.jar}”/>
 <lib file=”${commons-pool.jar}”/>
 <lib file=”${log4j.jar}” />
 <lib file=”${spring.jar}” />
 <lib file=”${jdbc.jar}”/>
 <lib file=”${jtds.jar}”/>
 </war>
 </sequential>
 </macrodef>
</target>

<!-- Setup the build-war macro for a WebSphere deploy -->
<target name=”war-websphere” depends=”” if=”deploy.websphere”>
 <macrodef name=”build-war”>
 <sequential>
 <war destfile=”${web.dist.dir}/${web.war}”
 webxml=”${web.build.dir}/WEB-INF/web.xml”
 compress=”true”>
 <fileset dir=”${web.build.dir}” excludes=”**/web.xml” />
 <webinf dir=”${struts.dir}” includes=”validator.
 xml, *.dtd” />
 <lib dir=”${commons-lang.dir}” includes=”*.jar” />
 <lib dir=”${dist.dir}” includes=”${dist.name}”
 />
 <lib dir=”${jstl.lib.dir}” includes=”*.jar” />
 <lib dir=”${struts.dir}” includes=”*.jar” />
 <lib file=”${commons-dbcp.jar}”/>
 <lib file=”${commons-pool.jar}”/>
 <lib file=”${log4j.jar}” />
 <lib file=”${spring.jar}” />
 <lib file=”${jtds.jar}”/>
 </war>
 </sequential>
 </macrodef>
</target>

Configuring Ant for Deployments Between Different Application Servers

3. JDBC Template Code
 The Spring JDBC APIs allowed for facile database
coding – much cleaner code and standardization along
the lines of connection management and exception
handling.

4. Flexible Data Sources
 The Spring model of using beans to wire together
dependent objects allowed us to use extra-container
data sources. This came with the benefit of standard-
ized usage of data sources across our runtime scenarios
– no fiddling around with container-specific data source
configuration.

Jakarta Commons Logging API
 We used the Jakarta Commons Logging API from the
beginning. It provides a very useful abstraction of typical
logging needs while supplying useful hooks for plugging in
various logging services such as Log4j, the Java Logging API,
etc. WebSphere even provides a gateway to its own tracing
facility. The ws-commons-logging.jar in the lib directory off
the WebSphere installation root directory allows for logging
of classes to be controlled via the WebSphere Administra-
tive Console – as long as those classes were coded to use the
Jakarta Commons Logging API.
 Commons Logging allowed us to configure which
plugin to use (e.g., Log4J in a Tomcat environment,

JDJ.SYS-CON.com36 October 2005

Feature

WebSphere logging in that environment) and – via its
default implementation that simply writes to the console
– to trace unit test code without the need to configure
or enable a logging service. In addition, we were able to
completely turn off logging via configuration files. (This is
done by placing a file called commons-logging.proper-
ties on the classpath with the line org.apache.commons.
logging.Log=org.apache.commons.logging.impl.NoOpLog
in it). In fact, this was the standard configuration for run-
ning our unit tests, which were run as part of every build.
Of course, if a unit test failed, logging could be turned on
again as a diagnostic tactic by setting org.apache.com-
mons.logging.Log=org.apache.commons.logging.impl.
SimpleLog.

What About the Risks?
 After a year of real-life experience of developing several
applications and performing multiple production deploy-
ments with this configuration, we feel that developing on
Tomcat and deploying to WebSphere is a low-risk strategy.
Once the environments were set up and the deployment
process automated, there were very few problems. Spring
provided the necessary container capabilities that we
needed in a portable way. We were able to take advantage
of Spring’s bean management, service locator, data source,
and JDBC abstractions.

 Differences in the security infrastructure were over-
come by using Tomcat’s built-in features and by providing
stub code in the service layer of the development envi-
ronment that simulated the presence of TAM. We were
able to use the same LDAP server in development (with
Tomcat security) and in QA (with Tivoli Access Manager
security).
 Over time, the cost-saving aspect of cross-platform
development became less important in favor of other
advantages that were initially not anticipated. The
lightweight development environment turned out to be
a great advantage, and being forced to layer the applica-
tion architecture to achieve isolation from the container
produced cleaner and better maintainable application
code – something that reduced the overall project risks,
not increased them.

Summary
 It takes a good amount of planning to develop on
Tomcat and successfully deploy to a WebSphere envi-
ronment. Open source frameworks, such as Spring
and Struts, can be used to shield an application from
platform-dependent implementation details. Ant is a
handy tool that facilitates cross-platform deployments.
Special consideration is required to handle application
security across different platforms. Coding guidelines
designed to avoid platform-dependencies must be
followed rigorously.
 With all these things in mind, cross-platform Java de-
velopment is a rewarding goal, because your resulting
application will be cleaner, easier to maintain, and can
provide a real cost advantage.

Resources and Links
• JDBC package for Tomcat with JVM 1.3.1: http://

java.sun.com/products/jdbc/articles/package2.
html

• IBM WebSphere: http://www.ibm.com/developer-
works/websphere

• IBM Tivoli Access Manager: http://www.ibm.com/
developerworks/tivoli

• Struts: http://struts.apache.org
• Spring Framework: http://www.springframework.org
• Commons Logging: http://jakarta.apache.org/com-

mons/logging
• jTDS JDBC Driver: http://jtds.sourceforge.net/
• Info Center for Tivoli – with related replication/fail-

over configurations: http://publib.boulder.ibm.com/
infocenter/tivihelp/v2r1/index.jsp?toc=/com.ibm.
itame.doc_5.1/toc.xml

• Great detailed intro to Tivoli Access Manager – must
read for anyone considering TAM: http://www.red-
books.ibm.com/redpapers/pdfs/redp3677.pdf

 The production security configuration followed the recommendations
for Tivoli implementations published by IBM. The setup consisted of two
WebSEAL servers, two Web/application servers, one policy server, and
a master/replica LDAP configuration. The application servers hosted all
of the applications with WebSEAL tying to each application through an
IP/Port specific junction (a “junction” is a resource mapping and defines
the true location of a URI). This necessitates multiple network cards in
the WebSEAL machines in order to support multiple host addresses that
are on the standard Web port.
 Each production WebSEAL instance had numerous junctions config-
ured to the multiple applications. The configuration was also set up for
failover by ensuring that the server UUID configured in the junctions
matched on each machine; therefore cookies for session fail-over could
be picked up by either WebSEAL instance.
 Choosing to install the Authorization Server on each application server
created policy server redundancy. The authorization servers act as a
replica of Policy server information. As a default, when the authorization
server is installed, the application server does not hit the policy server
directly in most cases because it obtains authorization information
directly from the authorization server. The only time the policy server is
reached is for any account updates. All these settings can be found in a
configuration file (webseald.conf). Choosing to follow the authorization
server route ensures application availability in case the policy server is
down – it’s a more economical method for fail-over than a master/rep-
lica policy server configuration.

Tivoli Access Manager

Once properly configured, Eclipse can be a powerful hub
for developing your application”“

Ilia Papas is a software engineer

at Molecular. He has been

working with web applications

for five years and has interests in

the design and implementation

of enterprise applications using a

variety of technologies. He

currently lives in the Boston area.

ipapas@molecular.com

Dita Vyslouzil is a Consultant

and Technical Architect in the

Engineering group at Molecular

in Watertown. She has been in

software development for 7 years,

concentrating in transactional

web applications.

dvyslouzil@molecular.com

�
��

��
��
��
��

��
��

��
��
��
��

��
��
��
��

��
��
��

���
���

��
���

��
��
��

��
���

��
��

��
��
��
��

��
��

��
��

���
��

��
��
��
��
���

��
��
��
��

���
��

��
��
��

��
���

��
��
��

���
��
��

��
��
���

��
��

���
��

�
��

��
��
��

��
��
��

��
��
��

��
��
��
���

��
��
��

��
��
��
���
��

���
��
��

��
���

��
��

��
��
�

���
���������������������������������������

��������������������

���������������������������������� �����
����� ����� ����� ������������ ��� �����
�������� �� ������� ���� ����� �� ������ �������
���� ���� ��� ���� ���� ���� ��� �������� ����
�������������������������������������

��
����������� ���������� ��������� �����������
���� ��� ����� ��������� ������������� ������
���� ��������� �� �������� ����������������
�����������������������������

���� ���� ��������� ���� ������� ���� ����
������ ���� ����������������� ����������
����������������������������������
�
��������� �� ������ ������ ����������� �����
��� �������� ��� ��������������������� � ���
��������������������

���

��

���

���

��
����� ������ �������� ��� �������� ��� ������ ������� ����������
���
���
�����������������������������
���

��
������� ������� ����� ��� ��������� ����� ��������� �����������
�������������������������������
���
�������� ���� ���������� ����������� ������� ���� ��� ������
���

��
��
�������������
������� ����������� ���� ����������� ����� ���������� �������
��
������� �������� ����� �� ������� ��������� ����� �� �������� ��� ��������
��

������� �

���
��
���������������� ����� ��������� �������� ������� ���� ��� ���������
��������� ����������������� ����� ������ � ������� ����������� ������
�����������������������������������
�������� ��������� ���� ���� ��������� ������������ ����� ���������
��������������������� ��

�
��

��
��
��
��

��
��

��
��
��
��

��
��
��
��

��
��
��

���
���

��
���

��
��
��

��
���

��
��

��
��
��
��

��
��

��
��

���
��

��
��
��
��
���

��
��
��
��

���
��

��
��
��

��
���

��
��
��

���
��
��

��
��
���

��
��

���
��

�
��

��
��
��

��
��
��

��
��
��

��
��
��
���

��
��
��

��
��
��
���
��

���
��
��

��
���

��
��

��
��
�

���
���������������������������������������

��������������������

���������������������������������� �����
����� ����� ����� ������������ ��� �����
�������� �� ������� ���� ����� �� ������ �������
���� ���� ��� ���� ���� ���� ��� �������� ����
�������������������������������������

��
����������� ���������� ��������� �����������
���� ��� ����� ��������� ������������� ������
���� ��������� �� �������� ����������������
�����������������������������

���� ���� ��������� ���� ������� ���� ����
������ ���� ����������������� ����������
����������������������������������
�
��������� �� ������ ������ ����������� �����
��� �������� ��� ��������������������� � ���
��������������������

���

��

���

���

��
����� ������ �������� ��� �������� ��� ������ ������� ����������
���
���
�����������������������������
���

��
������� ������� ����� ��� ��������� ����� ��������� �����������
�������������������������������
���
�������� ���� ���������� ����������� ������� ���� ��� ������
���

��
��
�������������
������� ����������� ���� ����������� ����� ���������� �������
��
������� �������� ����� �� ������� ��������� ����� �� �������� ��� ��������
��

������� �

���
��
���������������� ����� ��������� �������� ������� ���� ��� ���������
��������� ����������������� ����� ������ � ������� ����������� ������
�����������������������������������
�������� ��������� ���� ���� ��������� ������������ ����� ���������
��������������������� ��www.jinfonet.com/jp10.htm

or call (301) 838-5560.

JDJ.SYS-CON.com38 October 2005

or various reasons, an applica-
tion may install a security man-
ager. Usually it does so to guard
against malicious third-party

code either installed or dynamically
downloaded at runtime. If the applica-
tion uses RMI APIs, it’s even required
by a Java specification that a security
manager be installed, otherwise the
classloader will not download any
classes from remote locations.
 The most convenient security man-
ager to use is java.lang.SecurityMan-
ager. Once installed, it will work with
security policy to control the security
permissions granted to different pro-
tection domains. For simplicity, it will
be referred to as SecurityManager for
the rest of this article.
 The security policy is statically
initialized at application start-up.
For Sun’s JDK, the security policy
is defined in a security policy file.
Naturally, this initial security policy
cannot be changed at runtime once
it’s loaded with the application.
 What if you want the security per-
missions to change at runtime? For
example, you have a list of hosts from
which the socket connection requests
should not be accepted by the secu-
rity manager. This list keeps changing
when the application is running and
you don’t want to shut the application
down to make the latest list effec-
tive. Or you feel that the expressions
allowed in the security policy file are
not enough for your application. Sure,
it allows wildcards like “*”, but you
need something more dynamic and
powerful, like a regular expression.
What can you do?

 Before any solution is proposed,
let’s take a look at how security per-
missions are managed normally. First,
create a security policy that defines
a set of security permissions granted
to one or more protection domains,
then install java.lang.SecurityMan-
ager at the start of your application.
When the application calls a secu-
rity-sensitive API, the API first checks
with the SecurityManager to deter-
mine whether certain operations are
allowed. The SecurityManager calls
AccessContoller.checkPermission()
method, which in turn consults the
security policy when making security
permission decisions.

 It’s not difficult to find out from the
above that three components work
together to provide security permis-
sions – a security manager, a security
policy, and the AccessContoller. Ac-
cessController is a final class and
cannot be dynamically set with the
system, so there’s nothing we can do
about it. SecurityManager and Policy,
on the other hand, are extendable and
can be set with the system.
 It seems there are two approaches
– writing your own security manager
or writing your own security policy.

Writing Your Own Security Manager
 If you take a look at SecurityMan-
ager APIs, the bulk of them are two
checkPermission() methods and
some checkOperation() methods,
where Operation is an action like
Connect, Listen, SetFactory, etc. If the
security permission is granted, these
methods simply return without do-
ing anything. Otherwise, they throw
SecurityException to indicate that the
related security permission is denied.
To dynamically control the behavior,
just override one or more such APIs. If
a method is not overridden, leave the
behavior to SecurityManager and es-
sentially the security policy to decide.
 So far this seems easy. Is that so?
Let’s find out with a simple example.
In this example, you want to control
which properties can be accessed by
overriding the checkPropertyAcces
s(String key) API. It’s assumed that
the list of accessible properties keeps
changing and you get a fresh list each
time checkPropertyAccess(String key)
is invoked (see Listing 1).
 You don’t expect to get a security
exception because we allow access to
“user.home”. By the way, if you use a
security policy file that grants Prop-
ertyPermission to access “user.home”
and “user.dir” and install a Security-
Manager, TestProperty prints out the
value of “user.home” just as expected.
 If you run TestProperty with MySe-
curityManager in Sun’s JDK 1.4.2, it
prints out the following:

Exception in thread “main” java.lang.Excep

tionInInitializerError

 at java.lang.System.setSecurityManager0(Sy

General Java

by Xiaozhong Wang

How to Provide
Dynamic Security Permissions

F

Xiaozhong Wang is a software

engineer at Sun where he has

solved some security problems

in his TCK (Technology

Compatibility Kit) work.

xiaozhong.wang@sun.com

Two approaches

An application may need a security manager that is less restrictive
than the initial security policy at certain times”“

JDJ.SYS-CON.com40 October 2005

General Java

stem.java:243)

 at java.lang.System.setSecurityManager(S

ystem.java:212)

 at TestProperty.main(TestProperty.

java:5)

Caused by: java.lang.SecurityException:

Not allowed!

 at MySecurityManager.checkPropertyAccess

(MySecurityManager.java:9)

 at java.lang.System.getProperty(System.

java:573)

 at java.lang.Integer.getInteger(Integer.

java:814)

 at java.lang.Integer.getInteger(Integer.

java:731)

 at sun.security.action.GetIntegerAction.

run(GetIntegerAction.java:90)

 at java.security.AccessController.

doPrivileged(Native Method)

 at sun.net.InetAddressCachePolicy.<clini

t>(InetAddressCachePolicy.java:94)

 ... 3 more

 The exception is thrown from
System.setSecurityManager() and
is caused by a read of property “su.
net.inetaddr.ttl”, which is totally
unrelated to our code. Seems like
you just shot yourself in the foot,
yet you don’t know where the bul-
let came from.
 Actually it’s not important to know
where the check comes from, but it
is important to note that the security
exception is caused by an Access-
Controller.doPrivileged() call.
 When we try the TestProperty
application with the standard Se-
curityManager and security policy,
AccessController.doPrivileged
doesn’t throw a security exception.
This is because SecurityManager.
checkPropertyAccess() delegates to
checkPermission(), which in turn
calls AccessController.check-
Permission(). AccessController
knows how to handle privileged
code blocks. When it sees a privi-
leged code block and the associ-
ated protection domain has the
required permission, it returns
without further checking callers of
the privileged code block on the

call stack. In our case, the privi-
leged code block is in the sun.net.
InetAddressCachePolicy, which is
from the system domain that has
all the permissions.
 Let’s go back to MySecurityMan-
ager. There is no way for it to know
whether a call is from a privileged
code block or the information about
the call stack. It grants and denies
the same set of permissions to all
protection domains, even if the pro-
tection domain is the system domain
where all permissions should be
granted. That’s where the problem
comes from.
 For more details regarding Access-
Controller, I encourage you to check
out the JavaDoc for the AccessCon-
troller and security documentation
at http://java.sun.com/j2se/1.4.2/
docs/guide/security/spec/security-
spec.doc4.html#20389.
 It’s important to note that My-
SecurityManager tends to be more
restrictive than SecurityManager (or
the initial security policy) by specifi-
cally disallowing access to most of
the properties. On the other hand,
an application may need a security
manager that is less restrictive than
the initial security policy at cer-
tain times. In this case, override a
SecurityManager’s check method in
the following manner:
1. Specifically allow an action by

directly returning from the meth-
od when a condition is met.

2. Otherwise delegate to the same
checkOperation() method in its
super class to get the default
behavior controlled by the initial
security policy.

 Listing 2 is an example of a secu-
rity manager that is less restrictive
than SecurityManager. The nice
thing about a less restrictive security
manager is that it can correctly han-
dle a privileged code block as it calls
super.checkPropertyAccess(), which
eventually calls AccessController.
checkPermission(). But that’s not

the end of the story. If you use this
security manager with our TestProp-
erty application, you still get strange
SecurityException:

Exception in thread “main” java.lang.

ExceptionInInitializerError

 at java.lang.System.setSecurityManager0(

System.java:243)

 at java.lang.System.setSecurityManager(S

ystem.java:212)

 at TestProperty.main(TestProperty.

java:5)

Caused by: java.security.

AccessControlException: access denied

(java.util.PropertyPermission sun.net.

inetaddr.ttl read)

 at java.security.AccessControlContext.

checkPermission(AccessControlContext.

java:269)

 at java.security.AccessController.checkP

ermission(AccessController.java:401)

 at java.lang.SecurityManager.checkPermis

sion(SecurityManager.java:524)

 at java.lang.SecurityManager.checkProper

tyAccess(SecurityManager.java:1276)

 at MySecurityManager.checkPropertyAccess

(MySecurityManager.java:9)

 at java.lang.System.getProperty(System.

java:573)

 at java.lang.Integer.getInteger(Integer.

java:814)

 at java.lang.Integer.getInteger(Integer.

java:731)

 at sun.security.action.GetIntegerAction.

run(GetIntegerAction.java:90)

 at java.security.AccessController.

doPrivileged(Native Method)

 at sun.net.InetAddressCachePolicy.<clini

t>(InetAddressCachePolicy.java:94)

 ... 3 more

 Guess what? On the call stack, My-
SecurityManager.checkPropertyAc-
cess() is the caller of AccessController.
checkPermission(). And MySecuri-
tyManager is in a protection domain
that does not have all permissions like
system domain does. In our case, the
default security policy does not grant
the required permission (java.util.
PropertyPermission sun.net.inetaddr.
ttl read) to MySecurityManager’s

Basically there is no way to let a more restrictive security manager
properly handle a privileged code block”“

41October 2005JDJ.SYS-CON.com

protection domain. AccessController immediately throws the
exception without further checking the call stack.
 A quick remedy for this is to put MySecurityManager under
a trusted classpath, where the classes are granted all granted
permissions. In Sun’s JDK, it can be achieved by using -Xboot-
classpath/a: command line operation. Once this is applied,
the application happily prints out the value of system property
“user.home”.
 What have we learned? Basically there is no way to let a
more restrictive security manager properly handle a privi-
leged code block. Given that there are a lot of privileged code
blocks in a Java implementation and possibly in applications,
you could find a lot strange behaviors that are transparent to
you under a normal security environment. It’s generally not
preferable to use such a security manager with your applica-
tion. On the other hand, it is possible to use a less restrictive
security manager with your application but not without
minor deployment overhead.
 Another piece of advice: checkOperation() methods are
JDK 1.1 style APIs and are less preferable than checkPermis-
sion() methods, which were introduced in Java 2. According
to the SecurityManager specification, all calls to checkOpera-
tion() methods delegate to checkPermission() methods with
an appropriate permission object as an argument. Overrid-
ing checkPermission() will provide the same functionality as
overriding checkOperation(). For simplicity, Listing 2 does
not override the checkPermission() methods. This will only
work if the application or the underlying Java API implemen-
tation uses checkOperation() APIs. The specification does not
forbid the direct use of checkPermission() methods (in which
case it makes overriding checkOperation() methods useless)
in applications and new Java API implementations. There-
fore, it’s more efficient and much safer to override checkPer-
mission() methods instead.

Writing Your Own Security Policy
 We just mentioned that it’s not preferable to use a
security manager that is more restrictive than Security-
Manager. But what can we do if we need more restrictive
permissions? The answer: write your own security policy
that extends java.security.Policy and sets it with the sys-
tem. This option has become available since Sun’s JDK 1.4
as it starts to support security policy set at runtime after
loading the initial security policy.
 Let’s start by looking at the Policy specification. There
are two abstract methods in Policy:

 getPermissions(CodeSource codesource)

 refresh()

 It seems we only need to provide the implementation to
these methods. However, in practice, getPermissions(Protecti
onDomain domain) and implies(ProtectionDomain domain,
Permission permission) should also be overridden to avoid
the inconsistency caused by a particular caching strategy in a
Java implementation. For example, in Sun’s JDK, the implies()
method sometimes returns the result from an internal cache,
which may contain stale permissions granted to a particular
protection domain, without calling the getPermissions()
methods to get updated security permissions.

 Listing 3 provides an example of a policy that provides
dynamic security permissions for accessing certain proper-
ties. Please note that in order to implement getPermissions
(CodeSource codesource), a customized implementation of
PermissionCollection has to be available as well.
 Apparently, this implementation is far more complicated
than the security manager approach. However, it gives you
more control of the runtime security permissions – they can
be more restrictive or less restrictive than the ones specified
in the initial security policy.
 The application successfully prints out the property
value for “user.home”. If you want to print out the value for
the property “user.name”, it throws a SecurityException as
expected:

Exception in thread “main” java.security.AccessControlException:

access denied (java.util.PropertyPermission user.name read)

 at java.security.AccessControlContext.checkPermission(AccessControl

Context.java:269)

 at java.security.AccessController.checkPermission(AccessController.

java:401)

 at java.lang.SecurityManager.checkPermission(SecurityManager.

java:524)

 at java.lang.SecurityManager.checkPropertyAccess(SecurityManager.

java:1276)

 at java.lang.System.getProperty(System.java:573)

 at TestPolicy.main(TestPolicy.java:72)

JDJ.SYS-CON.com42 October 2005

General Java

 There are two important things
to note when you write your own
policy:
1. Avoid using any APIs that are

checked by SecurityManager in the
methods of your policy implemen-
tation. In a worst case scenario,
you may end up having a indefinite
loop and stack overflow. If you
really have to use such APIs, wrap
them with a privileged code block
and put your policy class under a
trusted classpath.

2. Even though you have overrid-
den all possible methods in the
policy, you still can’t prevent the
AccessController from using the
internal policy cache. One way to

minimize the “bad” impact of the
cache is to force a refresh of the
cache by setting the policy again
whenever the security permissions
change. For example, you can set
up a listener for the change of
security permissions. When it hap-
pens, the listener takes the action
to reset the policy with the system.
However, if there are other threads
running when the policy is reset
and initialized, the threads may
get incorrect security permissions
from the policy simply because
the policy is still in initialization.
You may observe strange behaviors
in your application if the security
permissions change frequently.

Conclusion
 To sum up, you can either over-
ride the SecurityManager or Policy
to provide dynamic runtime security
permissions. The security manager
approach is suitable if the runtime
security permissions tend to be less
restrictive than the initial security
policy. The security policy approach is
suitable for either more restrictive or
less restrictive security permissions, but
you need to watch for and take extra
steps to prevent unexpected behavior
due to a policy cache in the underly-
ing Java implementation. Your own
policy may not work well if the security
permissions change frequently for a
multi-threaded application.

Listing 1

import java.security.*;

public class TestProperty {

 public static void main(String[] args) throws Exception {

 System.setSecurityManager(new MySecurityManager());

 System.out.println(System.getProperty(“user.home”));

 }

}

public class MySecurityManager extends SecurityManager {

 public void checkPropertyAccess(String key) {

 String[] allowed = getAllowedProperties();

 for (int i = 0; i < allowed.length; i++) {

 if (key.equals(allowed[i])) {

 return;

 }

 }

 throw new SecurityException(“Not allowed!”);

 }

 private String[] getAllowedProperties() {

 return new String[] {“user.home”, “user.dir”};

 }

}

Listing 2

public class MySecurityManager extends SecurityManager {

 public void checkPropertyAccess(String key) {

 String[] allowed = getAllowedProperties();

 for (int i = 0; i < allowed.length; i++) {

 if (key.equals(allowed[i])) {

 return;

 }

 }

 super.checkPropertyAccess(key);

 }

 // This method is supposed to return different things

 // at different times

 private String[] getAllowedProperties() {

 return new String[] {“user.home”, “user.dir”};

 }

}

Listing 3

import java.security.*;

import java.util.*;

public class TestPolicy extends Policy {

 private static CodeSource appCodeSource;

 private static PermissionCollection permissions;

 private static Permissions allPermissions;

 // assume that TestPolicy and the application are from the

same code source

 static {

 appCodeSource = TestPolicy.class.getProtectionDomain().

getCodeSource();

 permissions = new MyPermissionCollection();

 allPermissions = new Permissions();

 allPermissions.add(new AllPermission());

 }

 static class MyPermissionCollection extends

PermissionCollection {

 public void add(Permission permission) {

 }

 public boolean implies(Permission permission) {

 if (permission instanceof PropertyPermission) {

 return getAllowedPropertyPermissions().

implies(permission);

 }

 // we allow all other permissions

 return true;

 }

43October 2005JDJ.SYS-CON.com

 public Enumeration elements() {

 return new Enumeration() {

 public boolean hasMoreElements() {

 return false;

 }

 public Object nextElement() {

 return null;

 }

 };

 }

 // This method is supposed to return dynamic results

 private Permissions getAllowedPropertyPermissions()

{

 Permissions perms = new Permissions();

 perms.add(new PropertyPermission(“user.dir”,

“read”));

 perms.add(new PropertyPermission(“user.home”,

“read”));

 return perms;

 }

 };

 public PermissionCollection getPermissions(CodeSource

codesource) {

 if (appCodeSource.equals(codesource)) {

 return permissions;

 }

 return allPermissions;

 }

 public boolean implies(ProtectionDomain domain,

Permission permission) {

 return getPermissions(domain.getCodeSource()).

implies(permission);

 }

 public PermissionCollection getPermissions(ProtectionDom

ain domain) {

 return getPermissions(domain.getCodeSource());

 }

 public void refresh() {

 }

 public static void main(String[] args) throws Exception

{

 Policy.setPolicy(new TestPolicy());

 System.setSecurityManager(new SecurityManager());

 System.out.println(System.getProperty(“user.home”));

 }

}

�����������������
���������������������������

�������������������������
��

���������������������������

��������������������������
������������������������
������������������

���������������

��

���������
������������������

�����������������������

������������������

�����������������

��������

��������������������������������������

��

���
���
���������������������������

�������������

JDJ.SYS-CON.com44 October 2005

ew serious database applications
are considered enterprise-worthy
without a core database engine
backed by a normalized and opti-

mized relational database architecture.
Traditionally, such database applica-
tions rely on SQL statements to retrieve
and update data in the back-end data
source.
 This well-established model contin-
ues to have strategic importance and
is the basis for the continued growth
of object/relational mapping and its
associated persistence mechanisms.
What is object/relational mapping (O/R
mapping)? It’s a programming tech-
nique that links a relational database
to object-oriented language concepts.
O/R mapping mechanisms allow a
developer to create Java objects using an
object-oriented perspective, eliminat-
ing the impedance mismatch that exists
between object and relational models.
 O/R mapping is a compelling solu-
tion for you, as a Java developer, be-
cause you can concentrate on building
the application while leaving the data
persistence details to the O/R mapping
mechanism.
 As a Java developer, you have a
variety of choices when it comes to Java-
based O/R mapping mechanisms. Three
communities or organizations are most
active in the Java O/R persistence world:
open source communities; standards-
based organizations, and commercial
ventures.
 Open source includes prominent
implementations such as Hibernate and
the Spring Framework. Standards-based
implementations are technologies such
as EJB 3.0 (JSR-220) and JDO (JSR-244).
Commercial implementations of note
include Oracle’s TopLink. In this article,
we take a look at the open source and
standards-based options to understand
the specific nuances that you should
consider when selecting an O/R map-
ping mechanism for your environment.

 Regardless of the O/R mapping mecha-
nism, they all leverage JDBC to com-
municate with the underlying relational
database. Although it is possible to use
an O/R mapping mechanism to access
non-relational data sources, the vast ma-
jority of applications leverage relational
databases. With that in mind, you need
to carefully consider each layer in the
software stack to ensure an optimal O/R
persistence design. As you’ll see, each O/R
mapping mechanism has a singular de-
pendency on the JDBC driver to commu-
nicate data to and from the database in a
highly efficient manner. If a suboptimal
JDBC driver is used, gains in developer
efficiencies are not complemented by
a fast-performing, highly scalable ap-
plication. Selecting the best-performing,
most reliable JDBC driver is essential for
building and deploying your applications
on any O/R mapping mechanism.
 Figure 1 shows a representation of
the various O/R mapping mechanisms
and how they relate to the application
code and relational data sources. This
clearly illustrates the critical role fulfilled
by the JDBC driver since it is used as the
foundation for each of these O/R map-

ping mechanisms. The efficiency of the
JDBC driver has a profound effect on the
performance, scalability, and reliability
of the applications. Each O/R mapping
mechanism is fully dependent on the
performance of the JDBC driver, regard-
less of the design of the O/R mapping
mechanism API exposed to the applica-
tion code, and regardless of the SQL-
based optimizations the O/R mapping
mechanism is able to achieve.
 One of the most hotly debated
and passionate discussions in the
software industry is which O/R map-
ping mechanism deserves to be the
dominant choice. This discussion has
left the Java community polarized. As
this debate rages on, developers and
architects should select the O/R map-
ping mechanism that best fits the needs
of their applications. This goes for each
component in the architecture stack,
including selecting the best JDBC driver
in order to realize application success.
 Before we delve into the details of O/R
mapping mechanisms, it’s important to
acknowledge that O/R technologies do
not alleviate the need for applications
that are built directly on top of the JDBC

Java Database

by Jonathan Bruce

JDBC –The Indispensable Component
of Persistence Mechanisms

F

Jonathan Bruce is program

manager at DataDirect

Technologies. He has led and

participated in four JSRs and

enjoys helping Java and .NET

developers take advantage of

the benefits XQuery offers when

working with XML and a variety

of databases. Recently relocated

from San Fransisco to North

Carolina, Jonathan spends his

weekends running, sailing, and

traveling.

 Jonathan.Bruce@datadirect.com

It’s critical for the success of the O/R infrastructure

 Figure 1

45October 2005JDJ.SYS-CON.com

(JSR 054 and JSR 221) and JDBC RowSet Implementations (JSR
114). In many cases, these technologies will continue to be
an optimal solution and will continue to be useful for many
practical purposes. JavaServer Faces, JSP, and JSP Tab Libraries
have considerable support for directly binding Web interface
widgets to underlying relational structures, allowing develop-
ers to quickly and easily develop applications. A number of
ease-of-development enhancements are being made that will
allow organizations to continue to leverage the investments
that they have made in these important technologies.
 To navigate our way through the stormy waters of O/R
mapping mechanisms, let’s take a look at the most active open
source and standards-based implementations. As we step
through these mechanisms, I will describe their high-level
features and highlight how many of the common features
of these sometime competing technologies can be used in a
complementary fashion.

Open Source: Hibernate and Spring
Hibernate
 Hibernate is arguably considered the leading open source
O/R mapping mechanism. Its success can be attributed to a
vibrant developer community, which is widely considered to
be a critical life source for any successful and prominent open
source project. Hibernate provides a well-designed API that per-
mits full persistence within the Java Object model, encompass-
ing support for collections, inheritance, and polymorphism.
For developer’s considering O/R persistence for the first time,
Hibernate provides the option to access the JDBC API directly,
allowing greater flexibility since you can leverage the full power
of SQL. Hibernate’s lead developers regard this as an important
asset, especially for those organizations that have made signifi-
cant investments in relational database technologies.
 Hibernate 2.0 is a production ready, fairly mature solution
that provides the base capabilities required for O/R map-
ping. With the Hibernate 3.x releases, the APIs and the overall
look and feel of the framework is evolving to look more like
the APIs documented in the EJB 3.0 specification. The most
significant contribution that Hibernate has made to EJB 3.0
design is the EntityManager, which manages the life cycle of
entities or objects. This core functional component, originally
inspired by Hibernate, has been incorporated into the EJB
3.0 specification and will soon become one of the standard
interfaces for the upcoming Java EE 5.0 platform.
 With the convergence in the overall design of Hibernate
and EJB 3.0, some would argue that the future of Hibernate
is bleak. After all, many of the improved interfaces, annota-
tions, and ease-of-development considerations included in
EJB 3.0 are the direct result of three iterations of the Hiber-
nate product. I would argue that by aligning the Hibernate
interfaces with EJB 3.0, Hibernate has nicely positioned itself
for wide-range adoption outside of the Java EE 5.0 standard.
In addition, it remains in a position to innovate and introduce
bleeding-edge enhancements outside the context of a stan-
dards body.
 In the following example, let’s look at how to configure
Hibernate with the DataDirect Connect for JDBC driver for the
Microsoft SQL Server database. As with most JDBC-enabled
applications, Hibernate permits configuration with a JDBC
Connection or DataSource. First, locate the $HIBERNATE_
HOME/etc/hibernate.properties file and insert the following
configuration details:

hibernate.connection.driver_class =

 com.ddtek.jdbc.sqlserver.SQLServerDriver

hibernate.connection.url =

 jdbc:datadirect:sqlserver://server_name:1433

hibernate.connection.username = sa

hibernate.connection.password = sa

 Next, Hibernate needs to be configured to use the correct
SQL dialect. In this case, we need to configure Hibernate to
function with SQL Server.

hibernate.dialect org.hibernate.dialect.SQLServerDialect

 Your application can easily establish a connection to this
new established data source with the following code.

SessionFactory sessions = cfg.buildSessionFactory();

Session session = sessions.openSession();

Spring Framework
 The Spring Framework is a relatively recent innovation, but
it already enjoys significant developer support for a variety of
reasons. It addresses some of the core complaints associated
with working with J2EE by absolving and abstracting the devel-
oper from the intricacies of J2EE. Spring’s layered architecture
is modularized, which permits you to select the components
that best meets the application requirements. As described in
this article, you can leverage the JDBC capabilities provided by
Spring while ignoring the other layers it provides.

JDJ.SYS-CON.com46 October 2005

 If you are considering O/R persistence
on top of JDBC, the Spring Framework
Data Access Objects (DAO) deserves a
close look. The DAO consistent layer
allows you to gracefully assemble object
persistence directly on top of JDBC, Hi-
bernate, or even Oracle TopLink. Spring’s
concept of DAO is grounded on the
principle of Plain Old Java Objects, often
referred to as POJOs. POJOs allow you to
think in terms of Java objects while allow-
ing the underlying persistence mecha-
nisms to manage the application object
life cycle.
 Spring’s DAO architecture has carefully
considered JDBC and has delivered an
alternative to the native JDBC that some
consider difficult to manage. Particular
emphasis has been given to improving er-
ror handling when dealing with underly-
ing relational data sources, as significant
improvements have been made with
respect to the depth of exceptions that
can be reported against any data source.
These efforts have not gone unnoticed
by the JDBC specification team as they
are quietly being adopted in the JDBC 4.0
exception hierarchy.
 The Spring Framework provides JDBC
abstraction using four packages that
provide the core data source object and
associated support. As with any modern
coding practice, Spring requires you to
follow a set of design patterns. In this
case, bean definition files, written in
XML, are used extensively and are the
primary way to configure applications
using Spring.

 In the following example, we use a bean
definition file to configure a J2EE Data-
Source using JDBC DriverManager class:

<beans>

 <bean id=”myDataSource”

 class=”org.apache.commons.dbcp.

BasicDataSource”

 destroy-method=”close”>

 <property name=”driverClassName”

 value=”com.ddtek.jdbc.sqlserver.

SQLServerDriver” />

 <property name=”url”

 value=”jdbc:datadirect:sqlserver://<HOST>/

mydb”/>

 <property name=”sa” value=”sa” />

 </bean>

:

</beans>

 We can also do this using a JDBC pro-
grammatic approach:

DriverManagerDataSource dataSource =

 new DriverManagerDataSource();

dataSource.setDriverClassName(

 “com.ddtek.jdbc.sqlserver.

SQLServerDriver”);

dataSource.setUrl(

 “jdbc:datadirect:sqlserver://<HOST>:/

test”);

dataSource.setUsername(“sa”);

dataSource.setPassword(“sa”);

 With Spring, it is possible to layer the
DAO layer on top of JDBC or an O/R Per-
sistence mechanism such as Hibernate.
Building Spring-enabled applications

with Hibernate is an increasingly popular
model since developers can realize in-
creased productivity gains. With Spring’s
modular and layered approach, you can
easily mix and match your preferred
approach to data access. Spring provides
JdbcDaoSupport, HibernateDaoSupport,
and JdoDaoSupport classes for use of
their DAO model on top of either the data
access or persistence layer.

Standards Based: EJB 3.0
EJB 3.0
 EJB 3.0 is a standard-based effort that
has been underway since the launch of
a number of JSRs sponsored by Sun Micro-
systems that are aimed at simplifying
the J2EE platform. EJB 3.0 was originally
focused on resolving many of the difficul-
ties developers experienced with session
beans and message-driven beans (MDB).
Although not a foundational goal, the EJB
3.0 expert group felt it was important to
establish a consistent persistence layer in
EJB in an effort to quell ongoing debates
about the J2EE’s standard persistence
model. By soliciting input directly from the
O/R Mapping industry, EJB 3.0 has evolved
significantly from its original specification
goals. At the time of writing, EJB 3.0 Public
Review draft provides a unifying Persis-
tence layer that is the result of cooperative
efforts from lead developers of Hibernate,
JDO, Oracle TopLink, and others that have
a vested interest in this space.
 This cooperative effort is excellent
news for developers and architects alike
since EJB 3.0 promises to combine the
best design efforts of Hibernate, JDO, and
Oracle TopLink. This effort will result in
the delivery of an O/R model that will be-
come the standard for future J2EE-based
development. Furthermore, EJB 3.0’s per-
sistence layer specification will be imme-
diately recognizable to anyone who has
previously worked with the established O/
R mapping mechanisms. The concept of
the EntityManager is almost identical to a
similar idea provided by Hibernate. And,
the provision of Named queries, Callback
listeners, and O/R Mapping types have all
been heavily influenced by the existing
O/R persistence market leaders.
 Although EJB 3.0 provides a standard
set of interfaces, the configuration for each
implementation will likely vary to some
degree. In the following example, we look
at how Oracle’s EJB 3.0 implementation is
configured with the DataDirect Connect
for JDBC driver for the Oracle database.

Java Database

47October 2005JDJ.SYS-CON.com

 You can obtain a copy of Oracle’s 10.1.3 J2EE Container (OC4J)
from http://www.oracle.com/technology/software/products/ias/
preview.html, and the DataDirect Connect for JDBC Driver for the
Oracle database from http://www.datadirect.com/products/jdbc/
index.ssp. Then, copy the driver JAR files to this location:

cp 'base.jar utils.jar and oracle.jar'

 $ORACLE_HOME/j2ee/home/applib

 Next, create a DataSource in data-sources.xml located in the fol-
lowing directory:

 $ORACLE_HOME/j2ee/home/config

 For an Oracle database, configure the DataDirect driver as a
managed data source:

<managed-data-source

 name=“OracleDataSource"

 jndi-name="jdbc/DDOracleDS"

 description="Managed DataSource">

 connection-pool-name="myConnectionPool"/>

 Include the following data that defines a connection pool.

<connection-pool

 name="myConnectionPool"

 min-connections="10"

 max-connections="30"

 inactivity-timeout="30">

 <connection-factory

 factory-class="com.ddtek.jdbcx.oracle.OracleDataSource"

 user="scott"

 password="tiger"

 url="jdbc:datadirect:oracle://<HOST>:1521"/>

 </connection-factory>

</connection-pool>

Persistence Mechanisms – Comparison
 Having discussed the various backgrounds of today’s market-
leading O/R mapping mechanisms, there are many considerations
that you need to keep in mind when making your choice. Table 1
summarizes the key technical, business, and support capabilities
that you will want to consider when choosing a Persistence frame-
work.

JDBC – The Critical Link
 O/R technologies excel at providing an object-oriented view of
relational data while eliminating the development effort relating to
the persistence model. Since the O/R mapping mechanisms gener-
ate efficient JDBC calls to access the database, some people argue
that the relative importance of the JDBC driver has been reduced.
But, as with any architecture, the overall efficiency of the application
will be greatly affected by the weakest layer in the application stack.
Regardless of the JDBC code that is generated, the O/R mapping
mechanisms lack the ability to control how the drivers interact with
the database. At the end of the day, the efficiency of the applica-
tion is in large part dependent on the ability of the JDBC driver to
securely move data between the application and the database with
the greatest level of performance, scalability, and reliability. The

ability of the driver to efficiently communicate with the wire-level
protocol exposed by the database and to efficiently manage packet
transmission as it relates to fetching data and performing updates is
fundamental to the application. Although there are many factors to
consider when selecting a JDBC driver (interoperability, standards
leadership, technical support, etc.), selecting the best possible JDBC
driver based on performance, scalability, and reliability is key to real-
izing the benefits of applications that are based on an O/R frame-
work.

Conclusion
 O/R mapping mechanisms offer a compelling model for many
developers looking to overcome the impedance mismatch associ-
ated with object and relational data constructs. O/R technologies
improve developer productivity by eliminating the development
effort associated with managing persistence, allowing the developer
to focus on the application’s business logic. Although there are many
factors to consider when selecting an O/R technology, the recent
trend to reconcile the O/R mapping APIs should prove beneficial
to all development organizations. While some organizations are
motivated by the developer productivity gains associated with using
an O/R mapping mechanism, it is extremely important to the overall
success of the application to leverage best-of-breed components at
each layer in the architecture stack. Leveraging an industry-leading
JDBC driver that provides the performance, scalability, reliability,
and security that is necessary in today’s applications is critical to the
overall success of the O/R infrastructure.

JDJ.SYS-CON.com48 October 2005

he world’s first office computer,
known as LEO, was created in the
1950s by Lyons, the British tea-
shop giant. Its aim was to replace

the thousands of clerks who did the
billing, invoicing, and stocktaking, and
also tracked the supply and demand
of sticky buns and cups of tea that the
public were consuming. Its success lay
not in the technology it employed, but
because it made the company more
efficient by streamlining what was pre-
viously a very labor-intensive business
process. It benefited Lyons, which cut
costs and had more control of corporate
information, and it also benefited the
thirsty public who had enough cakes,
sandwiches, and cups of tea to see them
through their seaside weekends, rain or
shine.
 In much the same way that early
machines automated tasks such as
harvesting crops or weaving cotton, LEO
was successful because it was more than
just an electronic filing cabinet – it had
integrated itself into the DNA of the cor-
poration and freed up employees from
manual labor.
 The 1960s to 1990s was not such
a cakewalk for IT, however, and the
Nobel Prize–winning economist Robert
Solow summarized this period: “We see
computers everywhere except in the
productivity statistics.” He was basing
his observation on the statistic that while
IT spending grew in every decade since
the 1960s, productivity growth slowed.
In the 1990s the amount of money spent
on new computer hardware alone was
over $750 billion, and since none of
this seemed to make companies more
efficient, the expression – The Productiv-
ity Paradox – was coined. Despite all the
money that was being spent, there was
no real return on investment.
 Solow did the industry a disservice
as he had painted a picture of ineffi-
ciency. What has occurred since is that
many corporations view IT not as an
opportunity to create revenue, but as an
overhead that departments have to incur
and as such it should be minimized.

 Such an attitude worries me deeply
as the line between saving costs for the
business and providing a poor customer
experience is a thin one. Two examples
of places where this line is wafer-thin are
voice response systems and browser apps
that front end legacy applications.
 Anyone who has telephoned a
company to deal with a request and had
to navigate touch-tone options in vain
knows the frustration and poor service
it provides. Most companies spend a
lot of money on their office’s reception

area; plush furniture, nice lighting, and
welcoming smiles greet customers as
they walk into the business. A voice
response system, however, is the virtual
equivalent of a company’s reception
area as it creates the first impression
and is the waiting lounge until you
can see the person you’ve called to
visit. While companies implement cost
savings by outsourcing help desks to
far-flung time zones and attempting to
put their customers many touch-tone
menus away from the real people left on
their help-desk support staff, they are
doing the equivalent of decorating the
entrance hall to their corporate offices
with uncomfortable chairs, shabby
carpets, and impersonal service.
 The Web has had a phenomenal
effect on companies and how they can
interact with their customers, but for
many industries I fear that all that has
occurred is they have front ended their
batch systems and exposed inherent
business weaknesses and flaws. Most of

the computing universe runs on batch
systems that were conceived and built
in the last millennium, where nightly
jobs compute numbers, move data, send
messages, and print reports. Front end-
ing this with a browser so customers can
interact with their data is more efficient
both for the company and the user;
however, if it suffers from inherent legacy
business inefficiencies, then it’s no more
than lipstick on a mainframe. A colleague
of mine suffered this recently when on
Friday they cancelled a payment that was
due to be made the following Monday,
only to find it had occurred anyway.
The final explanation given was that
three days notice was required because
Monday’s transactions were processed
over the weekend and the job to do this
started on Friday night. Listening to the
story I had visions of an IT department
in a deep subbasement somewhere with
armies of oompah loompahs stoking a
Heath Robinson Series II computer with
currant buns while they drank cups of
lukewarm tea.
 Is the problem that IT is forever suffer-
ing from the poor return on investment
that they suffered in the latter half of
the last century? That it will forever be
viewed as a cost center where only the
minimum functionality is enough rather
than a revenue-generating opportunity?
Successful e-businesses understand that
IT is the blood supply of their company
and invest hugely in being able to deal
with a world where customers exist in,
travel to, and relocate around all corners
of the globe and quality service must
be provided 24 hours a day. For compa-
nies whose boardroom goal is to report
quarterly results that boost shareholder
value based on profit and loss figures, is
the only way to do this to shave overhead
and cut costs and investment? To be-
come more productive and shake Solow’s
aphorism, are IT departments focused on
keeping the economists and accountants
happy, while delivering a poor usability
experience for customers and hurting
the company where it matters most – the
satisfaction of their users?

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

The Usability Paradox

Joe Winchester is a

software developer

working on WebSphere

development tools for

IBM in Hursley, UK.

joewinchester@sys-con.com

T

JDJ.SYS-CON.com50 October 2005

his article presents a data model
based on a Collection implemen-
tation that can be used with Swing
components JList and JComboBox.

It also discusses a method to use these
same concepts in constructing the user
interface of an application.

Overview
 Java Collections are indispensable
for building any application, whether
GUI or non-GUI. And the ArrayList
class is a heavyweight in the java.util
package. In a GUI application, the user
often must choose items from a list,
which can be presented in a variety
of forms (drop down combo, list box,
etc.). For example, the Java Swing
components JList and JComboBox each
have list data models – ListModel and
ComboBoxListModel, respectively. Both
components will react to changes in
these models in keeping with the Mod-
el-View-Controller paradigm. However,
neither of these models are based on a
Collection, and therefore lack many of
the convenient methods that the Col-
lection interface provides. In addition,
lists shown in an application are often
populated from external sources (like
a database) that return a Collection.
Unfortunately, none of the Collection
classes in Java broadcast changes to
their contents, which is necessary for a
user interface component to react to a
true MVC data model.
 The solution presented in this article
to this dichotomy is simple – a sub-
class of the ArrayList Collection class
that implements the ListModel Swing
interface, the ArrayListModel class. A
subclass, ArrayListComboBoxModel,
which extends ArrayListModel imple-
menting the ComboBoxModel model
(which is itself a subclass of ListModel),
is also presented.

Details
 The ArrayListModel class imple-
mentation is very straightforward. You
can probably already imagine what the
methods look like. All ArrayList methods

that modify the underlying collection
are augmented. The superclass ArrayL-
ist method is invoked, and then the
ArrayListModel publishes the underlying
collection changes to all ListDataListen-
ers that have been added (as part of sat-
isfying the ListModel interface contract).
Listing 1 shows the implementation of
the add(), remove() and set() ArrayList-
Model methods.
 Each method calls a corresponding
fire method, which notifies any ListDat-
aListeners what exactly in the collection
has changed (see Listing 2).

Other methods in ArrayListModel work
very similarly. For example, the clear()
method calls the superclass method,
and then fires a ListDataEvent signaling
that all items from the collection (model)
were removed. The ListDataEvent that is
sent to each ListDataListener completely
describes the collection elements (actu-
ally the indices) that have been added,
removed, or modified. Because Array-
ListModel implements the ListModel
interface, the collection can be directly
assigned as the data model of a JList. The
ArrayListComboBoxModel class extends

Techniques

by Phil HeroldArrayListModel

T

Phil Herold is a Java

architect with over

24 years experience in

software engineering.

He has been working

with Java client

technologies since

1996.

Phil.Herold@sas.com

A convenient way to use a simple collection

 Figure 1

 Figure 2

51October 2005JDJ.SYS-CON.com

ArrayListModel implementing the two additional methods
in the ComboBoxModel interface: getSelectedItem() and
setSelectedItem().
 To see these two classes in action, download the provided
code and run the ArrayListModelTest class (see Figure 1). This
is a Swing application consisting of a JToolBar, a JComboBox,
and a JList. There are two data models used. One is an Array-
ListModel that holds all of the data items, and the other is an
empty ArrayListComboBoxModel used by both the JCombo-
Box and JList components as their data models.
 Figure 1 shows the contents of the combo and list boxes
after the red, blue, magenta, and orange toolbar toggle
buttons, respectively, have been pressed. Pressing a toggle
button on the toolbar adds an item to the data model, while
un-pressing it removes the corresponding data item from
the model. The data model items are each an instance of
a ColorItem, an internally defined class that consists of a
name and an icon property (see Listing 3).
 Listing 4 shows the method in the test program that
constructs the JToolBar. The method has two arguments – an
Iterator of ColorItem objects and the list to manipulate on
toggle button press/un-press. The list parameter is actu-
ally the ArrayListComboBoxModel, but this method simply
knows it as a generic List. Note that the ActionListener that
is added to each toggle button is very trivial: it simply adds
or removes the data item from the list as appropriate. The
visual components (JList and JComboBox) attached to the
single ArrayListComboBoxModel are automatically updated.
A ListCellRenderer is used to render the ColorItem icon in the
JList.
 You can probably think of other uses for a Collection
that announces changes to itself, and not necessarily in
a GUI scenario. In that case, you might object to the fact
that ArrayListModel and ArrayListComboBoxModel are
connected to Java Swing, both in the interfaces they imple-
ment and the ListDataEvent/ListDataListener classes they
consume. One possible solution to this would be to extend
ArrayList as I have done but define your own event model
and listener interface that would be more generic and not
Swing biased. You could then use this class in a GUI appli-
cation as I’ve shown by writing the necessary adapters to
implement the ListModel and ComboBoxModel interfaces.

ListModels in Your UI
 Have you ever considered all of the list-like elements in
a GUI application? Many of the user interface constructs
in your application can be thought of as lists of user in-
terface elements that potentially have to be manipulated
(items are added, ordered, and removed). Examples are
menus, toolbars (their buttons), tabbed panes, internal
frames of an MDI application, and potentially other cus-
tom components. And quite often you need to associate
an icon, a tool tip, and some other visual component with
each element.
 Listing 5 shows an interface, UIElement, which defines
these properties. Run the UIElementTest application that is
provided as part of the code for this article. The application
looks similar to ArrayListModelTest and has many of the
same concepts (see Figures 2 and 3). The data model consists
of UIElement objects that are obtained from a UIElement-
Factory. (The factory returns instances of an inner class,
our ColorItem object from before that now implements the
UIElement interface.) The application knows nothing about

the underlying visuals, just that they implement the UIEle-
ment interface. The JList knows it can show icons from the
elements and a tool tip for each element. The JList is popu-
lated by selecting toggle buttons on the toolbar as above (see
Figure 2).
 The toolbar is constructed in a method that is nearly
identical to the one shown in Listing 4, except the ColorItem
parameterized type is replaced by UIElement. When an ele-
ment in the list is selected, the associated visual component
is obtained from the UIElement in the list and shown in the
line-bordered JPanel on the right (see Figure 3).
 Note the use of tool tips in both the list and panel, which
are provided by the getDescription() method of the UIEle-

 Figure 3

JDJ.SYS-CON.com52 October 2005

Listing 1
public void add(int index, E element) {

 super.add(index, e);
 fireIntervalAdded(index, index);
}

public Object remove(int index) {
 Object obj = super.remove(index);
 if (obj != null) {
 fireIntervalRemoved(index, index);
 }
 return obj;
}

public E set(int index, E element) {
 element = super.set(index, element);
 fireIntervalUpdated(index, index);
 return element;
}

Listing 2
protected void fireIntervalAdded(int firstIndex, int lastIn-
dex) {
 if (listDataListeners != null) {
ListDataEvent e = new ListDataEvent(this, ListDataEvent.
INTERVAL_ADDED, firstIndex, lastIndex);
 for (ListDataListener listener: listDataListeners) {
 listener.intervalAdded(e);
 }
}
}

protected void fireIntervalRemoved(int firstIndex, int last-
Index) {
 if (listDataListeners != null) {
ListDataEvent e = new ListDataEvent(this, ListDataEvent.
INTERVAL_REMOVED, firstIndex, lastIndex);
 for (ListDataListener listener: listDataListeners) {
 listener.intervalRemoved(e);
 }
}
}

protected void fireIntervalUpdated(int firstIndex, int last-
Index) {
 if (listDataListeners != null) {
ListDataEvent e = new ListDataEvent(this, ListDataEvent.
CONTENTS_CHANGED, firstIndex, lastIndex);
 for (ListDataListener listener: listDataListeners) {
 listener.contentsChanged(e);
 }
 }
}

Listing 3
private static class ColorItem {

 private String name;

 private ColorIcon icon;

 public ColorItem(String name, Color color) {

 this.name = name;

 icon = new ColorIcon(color);

 }

 public String toString() {

 return name;

 }

 public Icon getIcon() {

 return icon;

 }

}

Listing 4

private static JToolBar getToolBar(Iterator<ColorItem>

 colorItems,

final List<ColorItem> list) {

 JToolBar toolBar = new JToolBar();

 toolBar.setFloatable(false);

 while (colorItems.hasNext()) {

 final ColorItem item = colorItems.next();

 final JToggleButton toggle =

new ToggleButton(item.getIcon());

 toolBar.add(toggle);

 toggle.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 if (toggle.isSelected()) {

 list.add(item);

 } else {

 list.remove(item);

 }

 }

 });

 }

 return toolBar;

}

Listing 5
public interface UIElement {

 Object getItem();

 String getDescription();

 Icon getSmallIcon();

 Icon getLargeIcon();

 JComponent getComponent();

}

Techniques

ment data items. The ListCellRenderer for the JList reacts
to the state of the Use large icons check box, calling the ap-
propriate UIElement get*Icon() method. A simple change to
my UIElementFactory could be coded to return a completely
different implementation, but the rest of the application code
would not have to be touched.
 As you can see, we’ve implemented a simple list selection
method that populates another part of the application upon
selection. I would bet that most Swing developers have done
something very similar in one or more applications they’ve
worked on. And we’ve implemented a fairly rich user inter-
face, with icons and tool tips using a single data model, with
minimal code.
 In my next article, I will present more of this list-based/
UIElement framework for constructing an application’s

user interface. We’ll start with an AbstractUIElement
that will serve as the base class for our user interface data
model. I’ll also introduce the UIElementListModel class
and its view counterpart, the UIElementListView inter-
face (with an AbstractListView base class implementation).

Conclusion
 In this article I have described a convenient way
to use a simple collection (List) as the data model for
JList and JComboBox Swing components. These com-
ponents react to changes in the underlying collection,
remaining synchronized with the data in the model.
I have also introduced the beginning of a small
framework that can assist in constructing a Swing
application.

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 Altova www.altova.com 978-816-1600 4

 Arcturus Technologies www.arcturustech.com 703-822-4582 23

 ceTe Software www.dynamicpdf.com 800-631-5006 33

 Common Controls www.common-controls.com +49 (0) 6151/13 6 31-0 45

 ExtenTech www.extentech.com/jdj 415-759-5292 39

 Google www.google.com/jdj 650-253-0000 41

 IBM www.ibm.com/middleware/tools Cover IV

 InetSoft www.inetsoft.com/jdj 888-216-2353 21

Information Storage & Security Journal www.issjournal.com 888-303-5282 53

 InterSystems www.intersystems.com/cache11p 617-621-0600 17

 IT Solutions Guide www.itsolutions.sys-con.com 888-303-5282 49

 Jinfonet Software www.jinfonet.com/jp10 301-838-5560 37

 M7 www.m7.com/power 866-770-9770 25

 MapInfo www.mapinfo.com/sdk 800-268-3282 13

 Microsoft microsoft.com/connectedsystems Cover II

 Northwoods Software Corp. www.nwoods.com/go 800-434-9820 47

 ODTUG www.odtug.com 43

 Parasoft Corporation www.parasoft.com/jdjmagazine 888-305-0041 7

 Perforce Software www.perforce.com 510-864-7400 9

 ReportingEngines www.reportingengines.com 888-884-8665 15

 RightOrder, Inc. www.rightorder.com 408-983-4000 51

 Smart Data Processing, Inc. www.weekendwithexperts.com 732-598-4027 59

 Software FX www.softwarefx.com 800-392-4278 Cover III

 Synaptris www.intelliview.com/jdj 866-99IVIEW 29

 SYS-CON Website www.sys-con.com 888-303-5282 61

 WebAppCabaret www.webappcabaret.com/jdj.jsp 866-256-7973 31

 Windward Studios, Inc. www.windwardreports.com 303-499-2544 11

JDJ.SYS-CON.com54 October 2005

s users of software applica-
tions, we commonly deal
with the Graphical User
Interface, which, in most of

cases, contains the following main
elements:
1. A menubar, which includes all the

available commands and options
(we’ll call them functionalities)

2. A toolbar, which is a container
for a subset of the most common
and useful functionalities (typi-
cally a subset of “shortcuts” for the
above mentioned commands and
options)

3. A working space that is a kind
of “container” panel, where the
user can type, draw, or do any-
thing related to the application

 In this article I’ll discuss the
relationship between the menu and
the toolbar from both sides: the ap-
plication user and the application
programmer.
 In the role of developer of an ap-
plication, I have to design a complete
and efficient Graphical User Interface
for the application function calls; a
common choice is to provide the ap-
plication with both a menubar and a
toolbar.
 First I’ll start to design the menu-
bar and then provide the GUI with
a toolbar; however, I realize that
part of the toolbar work was already
done at the menubar design
time. My question is: Can I save
development time and work
programming the GUI toolbar by
using what it is already done for
the menubar?
 For example, suppose my text
editor–like application supports
clipboard operations. I have to insert
the menu items “cut,” “copy,” and
“paste” into the “Edit” menu, provid-
ing icon, accelerator key, and tooltips

text for each of them. Then I have to
associate what is commonly called
“action,” that is the code that imple-
ments the functionality (for “cut” it
could be to delete the selected text
and put it in the clipboard). Finally
I have to manage the enabled or
disabled status of each item (for
example, disabling paste if clipboard
is empty and enabling cut and copy
if some text is selected). Of course,
all these things are required for a
complete and useful, user-friendly
and good-looking menu.

 Actually I would like to do some-
thing more, for instance, providing
a toolbar for my application. First,
I add three buttons with the same
cut, copy, and paste icons (no text
for them, according to the Look-and-
Feel Design Guidelines), specifying
the same tooltip text used for the
menu items (note that I do exactly
what I did before for the menubar).
Then I link the buttons to the code
that implements their functional-
ities (I repeat my actions again). At
the end I write the code to disable

Java Desktop

by Mauro Micalizzi

Building a Toolbar
from a Menu

A

Mauro Micalizzi, a researcher,

has been involved in software

developing for 25 years, and

the Java language for seven.

He is currently working on GUI,

signal processing, and printing

framework. Mauro has a degree

in computer science.

mica@ifc.cnr.it

For better usability, versatility, and user friendliness

 Figure 1 Adding JToolBarMenu object into my GUI by choosing from customized component list in NetBeans 3.6

55October 2005JDJ.SYS-CON.com

and enable the buttons, following
the same criteria used for the menu
items. In conclusion, I do the same
things twice! And everybody knows
that doing something twice is not a
matter of laziness; this may easily in-
troduce unexpected errors and cause
undesired effects (such as a menu
item disabled and the corresponding
button enabled), especially when the
application grows up and new com-
mands or options are added.
 I concluded that my efforts could
be better employed in designing and
coding a good menubar, leaving the
development of the corresponding
toolbar to some automatic procedure.
 This kind of utility can be very use-
ful for applications that have many
functionalities and require frequent
maintenance. To my knowledge, even
sophisticated GUI design editors (like
form editors included in the most
common IDEs such as Eclipse or
NetBeans) don’t offer enough support
for this aspect and they don’t provide
anything that keeps linked menu
items and buttons.

Solution
 The idea for solving this problem
comes from the Action class (which
is included in the java.swing pack-
age); this class offers an interface
that extends the ActionListener and
can be used in cases where the same
functionality could be accessed by
several controls (just like menu items
and buttons).
 The Action interface allows you to
define, in a single place:
• The actionPerformed method

defined by the ActionListener inter-
face. This method is called when
the user activates the control (for
example, when he or she selects
a menu item or presses a button).
This method contains the code to
implement the functionality.

• The text describing each function-
ality; these strings can be used to
set the text in a menu item or to
display the flyover text for a button
or a menu item (tooltip text).

• The icon that depicts the
functionality.

• The enabled/disabled state of the
functionality.

• The accelerator key used to quickly
access the functionality.

• The mnemonic key used to “navi-
gate” by keyboard through a set of
Actions.

 Certain containers, including
menus and toolbars, know how to
manage an Action object. In detail
they can achieve information from
the Action to:
• Create the component appropriate

for the container (a button for the
tool bar, a menu item for the menu)

• Get the suitable information to
render the container (texts, icons,
enabled/disabled state)

• Notify the change of state
• Activate the functionality

Implementation and Use
 JToolBarMenu is an extension of
the JToolBar from the javax.swing
package (see sample use in Figures 1
and 2). It is initialized with a JMenu-
Bar object, that is, the menubar the
toolbar refers to.
 There is no limitation on the way
the menubar can be built: JToolBar-
Menu always shows a rational set of
buttons derived from the menubar
structure. Of course, if the menubar is
built in a chaotic form, JToolBarMenu
will be not so intuitive and tidy.
 The set of buttons showed in the
JToolBarMenu follows the same tree
structure as the menubar. In fact,
as root, there is a menubar, which
has attached some menus (primary
branches), and each of these branch-
es contains next menu items (leaves)
and/or some other submenu (other
branches) and recursively going on.
 It was developed as an algorithm to
arrange, under all possible condi-
tions and in the proper way, any input
menubar. This algorithm consists of
the following steps:
1. It scans all menus present in the

menubar. For each menu that is
not empty, a separator is added to
the toolbar.

2. For each item present in the menu:
• If the item is a separator, a sepa-

rator is obviously added.
• If the item is a submenu, the

algorithm is recursively applied
to the item again.

• if the item is a
JRadioButtonMenuItem (a menu
item with exclusive selection),
it’s collected in a vector until
there is no more contiguous
JRadioButtonMenuItems. When
the collection is ready, a set of
JToggleButton, each one cor-
responding to the item in the
vector, is added and preceded by
a new separator.

 Figure 2 A JToolBarMenu has been added to menu bar of sample applica-

tion used in this article

 Figure 3 Sample application with no configuration file. A big button

appears to invite user to customize his toolbar

 Figure 4 The 2 menus in menubar of sample application.

JDJ.SYS-CON.com56 October 2005

• If the item is a JCheckBox-
MenuItem (menu item with-
out an exclusive selection), a
JToggleButton is added.

• Otherwise the item is simply a
JMenuItem, thus a JButton is
added.

 This mechanism ensures consis-
tency with the menubar structure
and an attractive display because
the role of the separators, which are
always put in a right and rational
position, result in a user-friendly
layout.
 JToolBarMenu can be initialized
with any other component you
would like to add to the toolbar. To
do this, a component array can be
passed to the JToolBarMenu and
added at the beginning, each one
divided by a separator.
 JToolBarMenu is associated with a
configuration file (a simple proper-
ties file), which is used to store the
sequence of preferred menu items
that have to be added to the toolbar
for subsequent rebuilding.
 Within the configuration file, each
menu item is identified by a prop-
erty; if its value is empty, the item
will not be present in the toolbar,
otherwise, it will be added.
 If the configuration file is empty
(see Figure 3) or absent, the tool-
bar will contain only one button,
inviting the user to customize the
toolbar. In this case the user should
press the “Customize” button to
select the preferred functionalities
he or she would like to have in the
toolbar; a dialog box will appear
displaying a JTree that represents
the structure of the menubar given
as input (see Figures 4 and 5). Each
tree element (except root, which
identifies the menubar) is editable,
meaning that it has a checkbox to
specify whether that element should
be included in the toolbar (see
Figure 6).
 As described previously, the
grouping of JRadioButtonMenu-
Items is detected too. A group node
is created for them and added to the
tree; the JRadioButtonMenuItems
appear as group node leaves.
 The JRadioButtonMenuItems that
are grouped together are initially
disabled. They can be selected (or

unselected) all together by click-
ing on their parent group node.
The general rule is: by clicking on
a leaf element this will be toggled,
selected/unselected; by clicking on a
node, all its descendant items will be
selected/unselected.
 For a better view, the tree ele-
ments show a double icon: the first
one identifies the type of the item
(one of the following: menu bar,
menu or submenu, radio button,
check box, menu item), the second
one is the menu item icon provided
by the menu designer.
 After the first call, customization
of the dialog box can be accessed
by pressing the special button
that’s last in the set of buttons in
the toolbar (see Figures 7–9). This
action will open a popup menu that
shows the option “Customize…”. It
is advisable to provide the JToolBar-
Menu application with a predefined
configuration file so the user doesn’t
have to customize the menu on the
first run. The most important part
of JToolBarMenu is the construction
of the Action objects, which keeps
the menu items and toolbar buttons
linked together.
 If a menu item was already built
with an action, a new JButton is
created by directly passing the
menu item action (using the get-
Action method). Otherwise a new
and complete Action object must
be constructed, getting the follow-
ing information from the menu
item:
• Action name, from the menu item

text.
• Action command key, from the

menu item action command.
• Action Mnemonic key, from the

menu item mnemonic key.
• Action icon, from the menu icon,

if any, otherwise an “empty” icon
(that is, a 100% transparent icon)
will be set. Note that frequently
used menu items should always
have an icon, if not, an empty
button will be created that will
be anonymous and hardly distin-
guishable among others, especially
if there are some empty buttons.

• Action short description, from the
menu item tooltip text.

• Action enable state, from the menu
item enable state.

Java Desktop

 Figure 5 After clicking on “Customize” button, a dialog displaying the

menubar structure in a JTree will appear. Both icons are visible:

item type icon and specific icon too

 Figure 6 Some items are edited (i.e. selected). Note selection of align-

ment group and its disabled items

57October 2005JDJ.SYS-CON.com

 ActionListener objects, if any, are
also taken from a menu item. This
is important for two reasons: to
notify a menu item when a button is
pressed so that its functionality can
be activated, and to set the selected
state when a button is pressed or a
menu item is selected. A Change-
Listener object is created to recipro-
cally set the enable state for both the
components.
 JToolBarMenu is sensitive to the
resizing of the frame; when the frame
width is reduced, not enough space
could be available for displaying all
buttons in the toolbar. The solution
is to hide the minimum number of
buttons that precede the “custom-
ize” button so that it will be always
visible. An ellipsis (“…”) is replaced
instead of the hidden buttons. This
strategy is also used when, after
customizing the toolbar, the user has
selected too many buttons to fit the
assigned width.

Limitations
 Currently there is only one known
limitation: the algorithm that’s used
to represent the menu bar in a JTree
may not correctly interpret how to
group JRadioButtonMenuItems de-
pending on the menu design.
 For example, consider the Align-
ment menu composed by left, center,
right, and justify in this order:
1. If you put a menu separator

between center and right, the
algorithm will create two groups
instead of one, allowing operations
like pressing left and right at the
same time;

2. If you don’t insert a separator (or a
submenu or something that breaks
the continuity in the menu) before
left and after justify, the algorithm
will extend the grouping to oth-
ers that will eventually precede or
follow JRadioButtonMenuItems
and will produce malfunctions. If
your menubar contains this kind of
menu, your design is probably not
in agreement with common GUI
guidelines.

Conclusion
 This article presented a simple,
powerful, and useful tool for an
integrated menubar and toolbar
GUI design and implementation;

this tool matches the needs of both
the programmer (because he doesn’t
have to duplicate code) and the final
user (because she can arrange the
toolbar, adding or deleting but-
tons according to her needs). Using
it yields some benefits in terms of
better usability, versatility, and user
friendliness. No relevant overhead
has been encountered using JTool-
BarMenu.
 Programmers can insert this
component among the customized
components in their IDE and use it
whenever they want.
 Software code was tested within
our needs and developed using the
Java 2 Platform, Standard Edition, v
1.4.2. The source code is available at
http://jdj.sys-con.com.

References
• Sun Microsystems Inc. (2003).

Java 2 Platform, Standard Edition,
v 1.4.2, API Specification: http://
java.sun.com/j2se/1.4.2/docs/api/

• Sun Microsystems Inc. “Java look
and feel Graphics Repository”:

http://java.sun.com/developer/
techDocs/hi/repository/

• Sun Microsystems Inc (1999).
“The Java Look and Feel Design
Guidelines”: http://java.sun.com/
products/jlf/ed1/dg/index.htm

• Walrath, K.; Campione, M.; Huml,
A.; and Zakhour, S. (2004). The
JFC Swing Tutorial: A Guide to
Constructing GUIs, Second Edition.
Addison Wesley Professional:
http://java.sun.com/docs/books/
tutorial/uiswing/components/

 Figure 7 After customizing toolbar, selected buttons that fit frame width

are displayed. Ellpsis substitute hidden buttons

 Figure 8 Now frame has been resized to display all selected buttons. Note that left alignment is selected both in menu item and button

 Figure 9 Click on “Customize” button to change your toolbar layout again.

JDJ.SYS-CON.com58 October 2005

C# versus Java
[“C#: Is the Party Over?” by Calvin Austin,
Vol. 10, issue 8]
 I attribute the lukewarm success of C#
to two major factors:
1. It is not a cross-platform solution.

(Mono notwithstanding; to be really
cross-platform, MS would have to be
producing versions of the runtime
for both Linux and Mac, and keeping
those up-to-date.)

2. There is no easy way to use it to create
rich clients. This is just stupidity on
MS’s part, since the CLR has a security
sandbox similar to Java’s. In fact, the
very first version of .NET would run
applets (they called them “Windows
Forms” applications) without difficulty.
But then they locked down the security
settings, making it next to impossible
to deploy rich clients in heterogeneous
networks.

 The result is that .NET is just a sub-
stitute for C++, not a substitute for Java.
And given the huge C++ code base people
working on Windows software are start-
ing with, it makes no sense for them to
switch.

–Joshua Smith

 Who cares about cross-platform? It
has nothing to do with how great C#
really is. Much better than Java, hands
down.
 I wouldn’t refer to applets as “rich.”
They were cool back in the ’90s, but
are useless today. Why would MS du-
plicate an old technology like applets?
DHTML, Flash, and even AJAX are more
than enough “richness,” and all you
need.
 C# is absolutely a replacement for
Java, and a good one at that. The adop-
tion rate of C# is steadily increasing as
developers discover the better features
and syntax of C#. And don’t forget that
VB is still a hugely popular language and
developers don’t switch languages over
night.

-Mark Stewart

 In the area my company serves – 3D
visualization – the other client technolo-
gies you mention don’t come close to
providing the richness required. Have a
look at this: www.kaon.com/3DCatalog.
html.
 That is a Java 1.1 applet. It works on all
browsers, all operating systems.
 As for the question, “who cares about
cross-platform,” the answer is pretty
much every software architect, CTO, and
CIO. The issue isn’t being able to run your
app on multiple platforms (which is nice
to have, but often not a requirement).
Rather, it is having the freedom to change
platforms when you need to. You might
start out deployed on Windows Serv-
ers and then, for cost reasons, decide to
switch to Linux (or vice-versa, depend-
ing on who’s TCO numbers you believe).
Being able to do that without having to
recode your applications is crucial.

–Joshua Smith

Calvin Austin replies:
 If I had to name my #1 reason why
C# has failed to live up to the expecta-
tions for it back in 2000 is it was created
for all the wrong reasons.
 Ruby, PHP, and Python, in my opinion,
were all designed to solve a developer’s
problem and not a company’s problem.
C# came out of a time when there were
concerns with Visual Basic migration,
C++ defections, and the growth of open
source frameworks.
 As developers we are consistently
reminded that C# and .NET are to be
treated as one and the same. Why can’t C#
stand on its own merits for once, or is it a
language that is only useful with .NET?

Working with Open Source
[“J2SE and Open Source – Living Together in Per-
fect Harmony” by Joe Winchester, Vol. 10, issue 8]
 I agree with James Gosling’s concern
– there will always be holes in any specifi-
cations.
 If there is only one single implementa-
tion, such undocumented behaviors can
still be utilized after some preliminary
investigations; but if more than one
implementation is used by the majority of
end users, these undocumented portions
could have different behavior.
 It may sound as if we shouldn’t have
used any unspecified “features” in a
specification, but they are often the only
workaround for certain tasks to date, due
to the deficiency in the spec. Only by hav-
ing a single major implementation can we
do away with these problems easier, if at
all.

–Alex

Joe Winchester replies:
 But there are already different ver-
sions of the JRE created by different
vendors for their particular hardware
platforms. Sun does not create the Z-OS
or iSeries JRE. What keeps these together
is the TCK and given that Java now works
cross-platform, all that is different is that
there can be an open source version of
J2SE. James’ comments were more about
the fact that open source J2SE would
create forking, and this is something that
I agree with that we don’t want. What I
don’t fully understand is why forking is
more likely with open source that oc-
curred before with different JREs being
created commercially.

Solving Small Business Problems
[“Small Business Solutions” by Yakov Fain,
Vol. 10, issue 7]
 Seems like a few assumptions in Yakov
Fain’s article were a little off base.
• Web services: I prefer NetBeans, since

from my experience it’s a lot farther
ahead than Eclipse nowadays.

• Database: MySQL is free, quick, and
easy for this type of thing. Hibernate is
also a good choice.

Feedback

Letters to the Editors

59October 2005JDJ.SYS-CON.com

• Front end: Check out DWR for AJAX (www.getahead.ltd.uk/
dwr/). Also, “Swing is not there yet; SWT looks better.” Have
you actually looked at either of them? The only thing that SWT
does well is Eclipse. Take a look at the SWT mailing lists or
the bug lists, and you’ll notice there are all kinds of problems.
Swing is mature, stable, and ready to go –- use it. Also, why are
you asking JDJ readers about .NET? I’m sure many of them
have used it but really…

 Using Tomcat, Hibernate, MySQL, a free operating system,
and OS JMS products you should be able to do this project with a
minimal budget.

–Branden

 Dude! Get a copy of QuickBooks and the QB Point-of-Sale
system and be done with it! Then, if you need to integrate applica-
tions, there’s a great SDK that lets you do this.
 If you need to get a programming fix once you have QB in place,
see my Web site at http://qbopen.com or go to http://developer.
intuit.com.
 Now, I didn’t write QuickBooks, and don’t really wish to have to
defend it, but if you have to sell gas and need an immediate off-
the-shelf solution in your price range, then go to Best Buy and get
the QBPOS bundle, which also comes with a Dell computer.

–Bill McCuistion

Yakov Fain replies:
 I like Bill’s comment!
 Most likely QuickBooks can solve most of my needs, but…
1. I don’t want to be the same as any other gas station owner on

the block.
2. I don’t want to cut my ties with the Java world. If my gas

business won’t become profitable in a year, I’ll sell it to a
QuickBooks user and return to coding in Java, and my skills will
be up to date.

3. I want to understand the world of the open source software
and my next column [in this issue] will have an interview with
one of my famous customers who happens to be a best selling
author in this field.

4. By having this column, we can discuss real-world problems
that small guys face as opposed to talking all the time from the
perspective of large-scale enterprises.

A Slick Workaround
[“FrameResizer” by Phil Herold, Vol. 10, issue 8]
 Brilliant!!! I’ve been writing fancy Swing apps for a long time
and never even considered that there was a way around the gray-
screen-as-you-resize problem. Very slick, very thorough. An icon
for this was meticulously created by Jonathan Simon here: http://
today.java.net/pub/a/today/2005/06/07/pixelpushing.html.

—Michael Bushe

Java and Tag-Based Languages
[“Back to Two Tiers and Plain JSP” by Brian Russell, Vol. 10, issue 7]
 Good article. It’s worth noting that there is another free solution
out there that marries the best of Java and the simplicity of tag-
based languages. While ColdFusion CF is Java under the covers,
New Atlanta makes a competing product (Blue Dragon) that
follows the CF language model (tag-based) and for which the low-

end version is free. That version has about 80 plus percent of the
features and certainly all that is needed if what is in view is moving
from a site that is HTML to dynamic content. It is available in
both Windows and Linux incarnations and is quite powerful. The
major cost of a Web site over time is maintenance and CF is a very
“friendly” alternative to JSP. It can be readily understood by those
coming primarily from HTML as it uses the same tag paradigm.
Like ColdFusion, it uses Java as the core engine so it can easily
be extended to incorporate in Java anything needed that doesn’t
come natively. It’s worth checking out if you are looking at low cost
(free is hard to beat). I’ve ported a lot of code between commercial
CF, which we use at work, and Blue Dragon, which I use on my
own sites with complete portability. The Macromedia folks are
always upping the ante by adding new things but CF has been
around for so long that the core things used to build dynamic sites
are commodity features shared by both products and very nearly
identical in function. About the only thing required is adjustments
in the SQL if you use a different underlying DB, but that’s true
everywhere.

–Don Babcock

 One thing you failed to mention when using JSP is the need
for an application server. PHP on the other hand uses just the
HTTP Server on a system with PHP installed. I have been a J2EE
architect and developer for many years and, recently, when trying
to get something that’s professional looking up and running, it’s
easier to forget about the app server and use something like PHP.
Just my two cents.

JDJ.SYS-CON.com60 October 2005

t’s that time of the year again when
the JCP is in election mode and an
update about it is more than timely. At
writing time, the ratification ballot was

just posted (September 27) and this year’s
nominees are BEA, SAP, and SAS for the
Java SE/EE Executive Committee (EC) and
Nokia, IBM, and Philips for the Java ME EC
(https://www.jcpelection2005.org/jcp/
ratification_ballot).
 Before I share with you the nominees’
qualifications, just a reminder that the
JCP Elections process starts with member
nominations by the JCP Program Manage-
ment Office (PMO) for the vacant Ratified
Seats of the two JCP ECs. Nominations
are made with due regard for balanced
community and regional representation.
For more details, here are a few pointers
to useful election information resources.
You’ll find a 2005 JCP Elections primer on
jcp.org at http://jcp.org/en/whatsnew/
elections and an overview at PriceWater-
house Coopers, the annual online central
of the JCP elections, at http://www.jcpelec-
tion2005.org/jcp/overview.
 And the ratified ballot nominees for JCP
SE/EE EC are…!

BEA Systems, Inc.
 BEA’s elections qualifications card
mentions the company’s leadership in
enterprise infrastructure software, its
contribution to providing standards-
based platforms to accelerate the secure
flow of information and services. BEA
product lines – WebLogic, Tuxedo, JRockit,
and the new AquaLogic family of Service
Infrastructure – help customers reduce
IT complexity and successfully deploy
service-oriented architectures to improve
business agility and efficiency.
 BEA WebLogic Server, a leader in the ap-
plication server market segment, has been
a supporter of the Java EE Platform and
its latest release is certified for J2EE 1.4.
The WebLogic family of Java products are
providers of Java technologies and a con-

tinued source of innovation within the Java
community and have played a significant
role in the success of Java in the enterprise
market.
 BEA has served on the Executive Com-
mittee for J2SE/J2EE since its inception
and continues to be a strong supporter
of Java and Java standardization. BEA has
been a diligent voter in progressing new
JSRs through the process and a significant
contributor to improvements in both the
JSPA and the JCP process document. The
company also supported numerous JCP
activities at JavaOne and other venues.
BEA also holds leadership positions in
other standards and open source organiza-
tions, which enable BEA to be even more
effective on the JCP EC.
 BEA has successfully completed three
JSRs as Spec Lead: Java Rules Engine API
(JSR 94), Streaming API for XML (JSR 173),
and Web Services Metadata for the Java
Platform (JSR 181). They participate in over
20 JSR Expert Groups, including JAX-WS
(JSR 224), EJB3 (JSR 220), JDBC 4.0 (JSR
221), Content Repository for Java Technol-
ogy (JSR 170), and Java EE5 (JSR 244).

SAP
 With 12 million users and 96,400 instal-
lations, SAP is a large inter-enterprise
software company and the third-largest
independent software supplier overall.
With this experience, SAP is positioned to
guide Java to become the foundation for a
next-generation service composition plat-
form that can rapidly deliver applications
that support those business processes that
are most critical for a company.
 SAP has been a member of the SE/EE
Executive Committee since 2002 and has
actively worked with other leaders in the
Java industry to guide the future success
of the Java platform. SAP has proposed
ways to make Java simpler and easier to
use by reducing the number of technical
choices that Java developers face. SAP has
been most active in JSRs related to the Web

services space such as JAX-WS 2.0, Java
Business Integration (JBI), and the SAP-led
API for Web Services Policies (JSR 265).
Also, SAP has facilitated the dialogue with
communities outside of the JCP such as
the Eclipse Foundation.

SAS
 SAS provides a new generation of busi-
ness intelligence software and services
that create enterprise intelligence. SAS also
develops solutions that are used at about
40,000 sites – including 96 of the top 100
companies on the FORTUNE Global 500
– to develop more profitable relationships
with customers and suppliers; to enable
better, more accurate, and informed deci-
sions; and to drive organizations forward.
SAS integrates data warehousing, analytics,
and traditional BI applications to create
intelligence from massive amounts of data.
 Java technology is a critical underpin-
ning of the SAS Enterprise Intelligence Plat-
form. Because its customers desire to run
SAS software on a wide array of platforms
and operating systems, Java is a natural fit
for SAS. Java technology provides SAS with
a solid foundation upon which to build
multi-platform solutions that meet key
customer requirements. The company de-
livers a broad range of Java-based software,
from general-purpose analytical and re-
porting software to targeted, industry-spe-
cific, vertical-market business intelligence
applications. This software is delivered to
both desktop clients and the mid-tier.
 Due to the multi-platform nature of SAS
software and their use of Java technology,
Java standards and interoperability are
critical components to successful develop-
ment and deployment of their software
offerings. SAS believes that encouraging
and supporting the development of such
standards is an important part of working
with the Java community. As a result, SAS
has been a Java licensee partner since 1997
and has been actively involved in the Java
Community Process for much of that time.

JSR Watch

by Onno Kluyt

2005 JCP EC Elections
Are Under Way

I

Onno Kluyt is director

of the JCP Program at

Sun Microsystems and

Chair of the JCP.

onno@jcp.org

���������������������������������
���������������������������

24/7

Visit the ���
���������������

Website Today!

��

��������������������
����������������������
������������������

������������������������������������

���

��������������������

������������������������

�������������������

�������������������

���������������������������

����������������������

������������������������������

�����������

������������������������������

���������������������������

�����������������

����

��������������������������������

����������������
��
���

����������
���

�������������
��

��������
��

����������
��

��������
���
�
����������
��

��������������������
���

���������������������������������
���������������������������

24/7
Ratification ballot starts voting marathon

���������������������������������
���������������������������

24/7

Visit the ���
���������������

Website Today!

��

��������������������
����������������������
������������������

������������������������������������

���

��������������������

������������������������

�������������������

�������������������

���������������������������

����������������������

������������������������������

�����������

������������������������������

���������������������������

�����������������

����

��������������������������������

����������������
��
���

����������
���

�������������
��

��������
��

����������
��

��������
���
�
����������
��

��������������������
���

���������������������������������
���������������������������

24/7

JDJ.SYS-CON.com62 October 2005

JSR Watch

SAS has participated in approximately 25
Java Specification Requests spanning both
J2SE and J2EE technology, including such
diverse JSRs as the J2SE umbrella JSRs (JSRs
59, 176, and 270), Java OLAP Interface (JSR
69), Data Mining (JSR 73), JSP 2.0 and Serv-
let 2.4 (JSRs 152 and 154), and the Portlet
specification (JSR 168).
 SAS believes that it brings a unique,
end-user focus to the JCP Executive Com-
mittee. As a Java platform consumer rather
than a platform provider, the company has
an understanding of the challenges and
opportunities related to deploying end-user
Java applications in large-scale, enterprise
environments. By participating on the JCP
Executive Committee, SAS intends to col-
laborate with the broader Java community
in helping to strengthen the Java platform
and effectively drive Java standards forward.
 And the ratified ballot nominees for JCP
ME EC are…

IBM
 IBM has been a contributor to the Java
Community since 1996, bringing its breadth
of resources and deep understanding of
Java technologies to bear on almost every
aspect of the platform’s evolution. Since
1998, IBM has been a key participant and
leader on numerous JSRs and has been a
contributing member on both Executive
Committees since their inception in 2000.
IBM is heavily investing in the success of
Java technology – providing Java SE ports
for more than a dozen environments,
delivering over 300 Java-compatible prod-
ucts to market, and creating the Java EE
implementation in the form of WebSphere
Application Server. In the Java ME space,
IBM provides VM ports to more than 20
environments together with support for
a broad range of configurations, profiles,
and JSRs. IBM’s representatives, whether
leading or participating in Expert Groups
and Executive Committees, will continue to
use their expertise and technical resources
to make contributions for the betterment of
the Java Community and to help guide the
Java platform’s evolution and development.
 IBM is Spec Lead on three J2ME JSRs,
and participates in 17 J2ME JSR Expert
Groups.

Nokia
 Nokia has made a long-term commit-
ment to Java technology. The company had
already been participating in the develop-
ment of the Java Community Process before
the establishment of the current process

and the Executive Committees in 2000.
Since then Nokia has been actively cooper-
ating with other EC companies to further
the JCP process. Nokia’s goal has been,
and is, to help the JCP become more of an
open standards organization; at the same
time, however, maintaining/securing its
effectiveness and increasing Java technol-
ogy competitiveness and acceptability to
better serve the business of the members.
For example, Nokia has made proposals
(and used similar practices itself) to the EC,
which will increase the predictability of the
licensing terms of the Java specifications,
and add acceptability and accessibility of
the technology and create new business
opportunities around Java technology.
 In addition to the EC work, Nokia is also
a strong contributor to the practical JSR EGs
in bringing new functionality to Java tech-
nology to better enable the development of
new applications and services.
 Nokia is currently Specification Lead (or
co-lead) in more than 15 JSRs in the ME
area and actively contributing to more than
15 other JSRs. Nokia-led JSRs encompass
a wide area of necessary technologies for
mobile devices, such as 3D and 2D graphics
(JSR 184 Mobile 3G API, JSR 226 Mobile
2D SVG API), multimedia capabilities (JSR
135 Mobile Media API, JSR 234 Mobile
Multimedia Supplements), UI customiza-
tion (JSR 258), sensors (JSR 256) and near
field communication (JSR 257), and Mobile
Service Broadcasting (JSR 272).
 Nokia has also been working hard to
standardize and develop a more advanced
Java platform for future mobile devices,
which will enable a service-oriented, modu-
lar, scalable, and extendable architecture
based on CDC, enhanced with operational
management (JSR 232 Mobile Operational
Management) that allows remote manage-
ment and operation of the devices.
 Nokia has also felt a responsibility to
increase Java technology competitiveness
by making an effort to defragment the
Java technology marketplace. This work
is successfully run in close cooperation
with main mobile device suppliers, mobile
operators, and other interest groups in
the Nokia (co-led with Vodafone) Mobile
Service Architecture JSRs – JSR 248 and JSR
249. There the parties will create a mobile
service architecture and platform defini-
tion for the high-volume wireless handsets
to enable more Java technology–based
applications and services business to the
developers and service providers.
 Nokia’s latest JSR (co-led with Sun Micro-

systems) is working to harmonize the XML
parsing API offering in the ME and allow
for a high-level service connection to Web
services (JSR 279 Service Connection API
for ME, JSR 280 XML API for ME).
 Nokia continues to be a valuable
member of the JCP EC and has shown an
excellent track record in the active EC work,
in the practical development of the Java
technology in the EGs, and in their ability to
work together with other JCP members for
the good of the Java technology.

Royal Philips Electronics
 Royal Philips Electronics is one of the
biggest electronics companies and Europe’s
largest. The main divisions in the company
are consumer products, lighting, semi-
conductors, and medical systems. Philips
became interested in the JCP as it became
apparent that Java technology would be
built into a number of the products made
by Philips.
 As a diverse company, Philips brings a
wider perspective to the ME EC than the
mobile phone–centric approach of many
EC members. Much of the Philips interest in
Java has been in the area of entertainment,
initially digital television receivers and
more recently Blu-ray disc. Philips also has
interests in Java in mobile phones, in smart
cards, and in embedded consumer devices,
such as intelligent remote controls.
 Philips became a member of the JCP pro-
gram in 2000 and a member of the JCP EC
for J2ME when the JCP was first formalized,
also in 2000. Philips is a member of the JCP
Experts Groups including those for JSR 62
Personal Profile Specification, JSR 68 J2ME
Platform Specification, JSR 118 Mobile
Information Device Profile 2.0, JSR 121
Application Isolation API Specification, JSR
129 Personal Basis Profile Specification, JSR
135 Mobile Media API, JSR 179 Location API
for J2ME, JSR 216 Personal Profile 1.1, JSR
217 Personal Basis Profile 1.1, JSR 218 Con-
nected Device Configuration (CDC) 1.1, JSR
219 Foundation Profile 1.1, JSR 242 Digital
Set Top Box Profile – “On Ramp to OCAP,”
JSR 257 Contactless Communication API,
and JSR 272 Mobile Broadcast Service API
for Handheld Terminals.
 I’ll be back with the final results of the
2005 JCP Elections in next month’s column.
Meanwhile, if you are a JCP member, make
sure you mark the following important elec-
tion dates in your calendar: Ratified Voting,
October 4–17; Open Nominations, October
18–31; and Elections Ballot, November
1–14. Don’t forget to vote!

������������������������������� ������
��������������������������������������� ���� �������������������������������

��

���������������������

��������
��������������

���������
��������

����������������

���
���

���������
����������

���������������������� �����������������������
����������������� � ����� ������������ � ���� ������

�������� ��������� ����������������

����

